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The empirical likelihood ratio method is a general nonparametric inference procedure that has many
desirable properties. Recently, the procedure has been generalized to several settings including testing
of weighted means with right-censored data. However, the computation of the empirical likelihood
ratio with censored data and other complex settings is often nontrivial. We propose to use a sequential
quadratic programming (SQP) method to solve the computational problem. We introduce several
auxiliary variables so that the computation of SQP is greatly simplified. Examples of the computation
with null hypothesis concerning the weighted mean are presented for right- and interval-censored data.
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1. Introduction

The empirical likelihood ratio method was first proposed by Thomas and Grunkemeier [1].
Owen [2–4] and many others developed this into a general methodology. It has many desirable
statistical properties, see Owen’s recent book [5]. A crucial step in computing the empirical
likelihood ratio, i.e. the Wilks statistic, is to find the maximum of the log empirical likelihood
(LEL) function under some constraints. The Wilks statistic is just two times the difference of
two such LEL functions maximized under different constraints. In all the articles mentioned
earlier, this is achieved by using the Lagrange multiplier method. It reduces the maximization
of empirical likelihood over n − 1 variables to solving a set of r equations, f (λ) = 0, for the
r-dimensional multiplier λ. The number r is fixed as the sample size n increases. Furthermore,
the functions f are monotone in each of the r coordinates. These equations can be easily solved
numerically and thus the empirical likelihood ratio can be obtained.

Recently, the empirical likelihood ratio method has been generalized to several more com-
plicated settings. For example, Pan and Zhou [6] showed that for right-censored data, the
empirical likelihood ratio can also be used to test hypotheses about a weighted mean. Murphy
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2 Kun Chen and Mai Zhou

and van der Vaart [7] demonstrated, among other things, that Wilks’ theorem for the empirical
likelihood ratio also holds for doubly censored data.

However, the computation of the censored data empirical likelihood ratio in these settings
remains difficult, as the Lagrange multiplier simplification is not available (see Example 1).
Unlike the Owen paper [2], the proofs of Wilks’ theorem for the censored data empirical
likelihood ratio contained in Pan and Zhou [6] and Murphy and van der Vaart [7] do not offer a
viable computational method. They provide existence proofs rather than constructive proofs.
Therefore, a study of computational methods that can find the relevant empirical likelihood
ratios numerically when analyzing censored data is needed.

Example 1: Suppose i.i.d. observations X1, . . . , Xn with an unknown CDF FX(t) are subject
to right censoring, so that we only observe

Zi = min(Xi, Ci), δi = I[Xi≤Ci ], i = 1, 2, . . . , n; (1)

where C1, . . . , Cn are censoring times, assumed independent of X1, . . . , Xn.

The LEL function based on the censored observations (Zi, δi) is

LEL(w) =
n∑

i=1


δi log wi + (1 − δi) log


 ∑

Zj >Zi

wj





, (2)

where wi = FX(Zi) − FX(Zi−).
The empirical likelihood ratio test is based on the Wilks statistic

−2 log R(H0) = −2 log
maxH0 EL(w)

maxH0+H1 EL(w)

= 2
[

log
(

max
H0+H1

EL(w)
) − log

(
max
H0

EL(w)
)]

= 2[log(L(w̃)) − log(L(ŵ))] = 2[LEL(ŵ) − LEL(ŵ)].
Here, w̃ is the nonparametric maximum likelihood estimate (NPMLE) of probabilities without
any constraint and ŵ is the NPMLE of probabilities under the H0 constraint.

To compute Wilks’ statistic for testing a hypothesis about a weighted mean of X, we need
to find the maximum of the above LEL under the constraints

n∑
i=1

wiZiδi = µ,

n∑
i=1

wiδi = 1, wi ≥ 0;

where µ is a given constant, specified by the null hypothesis. Although the asymptotic null
distribution of the test statistic can be shown to be chi-squared with one degree of freedom, a
straight application of the Lagrange multiplier method does not lead to a simple solution. The
same difficulty arises also with the doubly censored data and other censoring cases. Thus, a
viable computation algorithm for the maximization of the empirical likelihood ratio is needed.

We propose to use the sequential quadratic programming (SQP) method to find the con-
strained maximum. In particular, we show how one can introduce several auxiliary variables
so that the computation of SQP for censored empirical likelihood is greatly simplified. In
fact, this trick can be used to compute empirical likelihood ratios in many other cases (for
example, doubly or interval-censored data), where a simple Lagrange multiplier computation
is not available.

We briefly review the SQP method in section 2. We show how to use the SQP method to
compute the maximum of the LEL function in section 3. Examples and simulations are given
in section 4.
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Computation of the empirical likelihood ratio 3

2. SQP method

There is a large amount of literature on nonlinear programming methods [see ref. 8 and
references there in]. The general strictly convex (positive definite) quadratic programming
problem is to minimize

f (x) = −aTx + 1

2
xTGx, (3)

subject to

s(x) = CTx − b ≥ 0, (4)

where x and a are n-vectors, G the n × n symmetric positive definite matrix, C the n × m

(m < n) matrix, and b the m-vector and the superscript T denotes the transpose. In this
article, the vector x is only subject to equality constraints CTx − b = 0. This makes the QP
problem easier. In the next section, we shall show how to introduce a few new variables in the
maximization of the censored LEL (2) so that the matrix G is always diagonal, which further
simplifies the computation. Therefore, instead of using a general QP algorithm, we have
implemented our own version in R that takes advantage of the mentioned simplifications.
The specific QP problem can be solved by performing one matrix QR decomposition, one
backward solve, and one forward solve of equations.

As all our constraints are equality constraints, one way to solve the minimization problem (3)
is to use (yet again) the Lagrange multiplier:

min
x,η

−aTx + 1

2
xTGx − ηT[CTx − b],

where η is a column vector of length m. Taking the derivative with respect to x and setting it
equal to zero, we get Gx − a − Cη = 0. We can solve x in terms of η to get

x = G−1[a + Cη]. (5)

As the matrix G is diagonal, the inverse G−1 is easy to obtain. Finally, we need to solve for η.
Substituting (5) into CTx = b, we get CT(G−1[a + Cη]) = b, which is, upon rewriting,

CTG−1Cη = b − CTG−1a. (6)

Once we get the solution to η from equation (6), we can substitute it back into equation (5) to
calculate x.

One way to solve equation (6) is to use QR decomposition. If CTG−1/2 = RQ, then
equation (6) can be rewritten as

(RQQTRT)η = b − RQG−1/2a,

(RRT)η = b − RQG−1/2a,

RTη = R−1b − QG−1/2a. (7)

Equation (7) can be solved by using back-substitution (twice) and matrix–vector multiplication
(once), which are low cost operations.

We are interested in maximizing the LEL or minimizing the negative LEL over all possible
probabilities. This is a nonlinear programming problem. As it is hard to find a minimum of the
negative LEL directly in many cases, and the negative LEL is often convex at least near the
minimum, we use a quadratic function to approximate it. Starting from an initial probability
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4 Kun Chen and Mai Zhou

w0, we replace the nonlinear target function (negative LEL) with a quadratic function that has
the same first and second derivatives at w0. The QP method is used to find the minimum of
the quadratic function subject to the same constraints. Denote the location of the minimum by
w1. Then, we update the quadratic approximation which now has the same first and second
derivatives as the negative LEL at w1. The QP method is used again to find the minimum
of the new quadratic function under the same constraints. Iteration ends when a predefined
convergence criterion is satisfied. The convergence criterion can be based on the values of the
negative LEL, which should decrease at each iteration. When the value of the negative LEL
no longer decreases, we stop the iteration.

One way to improve convergence and guarantee that the negative LEL decreases at
each iteration is the technique of damping: write the updated value of the solution as
x(s) = x(s−1) + x, we shall only accept x(s) if it decreases the negative LEL, otherwise we
shall search along the line x(s)

ξ = x(s−1) + ξx for 0 ≤ ξ < 1 until it decreases the negative
LEL value.

When the information matrix (of the LEL) is positive, the quadratic approximation is good
at least in a neighbourhood of the true MLE. Thus, in the case of convergence, the solution
gives the correct MLE under the given constraints.

3. Empirical likelihood maximization with right-censored data

We now describe the SQP method that solves the problem in Example 1. The implementations
for doubly censored data and interval-censored data are similar. We only give the details of
the right-censored data here.

For the right-censored data as in equation (1), the LEL is given in equation (2). It is
well known that the maximizer of the LEL has the following property: wi > 0 only when
the corresponding δi = 1. We shall restrict the search of a maximizer for the LEL under
the mean constraint to those wi’s. See Owen [2, p. 238] for a discussion on this type of
restriction.

We describe below two ways to implement the SQP method for finding the constrained
MLE.

The first implementation of QP is to take w in equation (2) as x. The knowledge of wi = 0
when δi = 0 helps to reduce the number of variables to k (the number of uncensored data).
The length of the vector a is k and the matrix G is k × k. The second derivative matrix G in
the quadratic approximation is dense and the computation of the inverse/QR decomposition
is very expensive.

The second and better method of using the SQP with censored data is to intro-
duce some auxiliary variables Rl = P(Z ≥ Zl), one for each censored observation; this
enlarges the dimension of the vectors (a, x, b) and the matrices (G, C) in equations (3)
and (4), but simplifies the matrix G. In fact, G will be diagonal, so that we can directly
plug in the inverse of the decomposition matrix of G. This speeds up the computation
tremendously.

We illustrate the two methods for the problem described in Example 1. In the first method,
as wi > 0 only when the corresponding δi = 1, we would separate the observations into two
groups: Z1 < · · · < Zk for those with δ = 1 and Z∗

1 < · · · < Z∗
n−k for those with δ = 0. The

first derivative of the LEL function is:

∂LEL(w)

∂wi

= 1

wi

+
n−k∑
l=1

I[Zi>Z∗
l ]∑

Zj >Z∗
l ,δj=1,1≤j≤k

wj

.
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Computation of the empirical likelihood ratio 5

Let us denote Ml = ∑
Zj >Z∗

l ,δj =1,1≤j≤k wj , then the a vector in the QP problem (3) will be

a =
(

1

w1
+

n−k∑
l=1

I[Z1>Z∗
l ]

Ml

,
1

w2
+

n−k∑
l=1

I[Z2>Z∗
l ]

Ml

, . . . ,
1

wk

+
n−k∑
l=1

I[Zk>Z∗
l ]

Ml

)T

.

Taking the second derivative with respect to wi , i = 1, 2, . . . , k, we have

∂2LEL(w)

(∂wi)2
= − 1

w2
i

−
n−k∑
l=1

I[Zi>Z∗
l ]

M2
l

,

and for i �= q:

∂2LEL(w)

∂wi∂wq

= −
n−k∑
l=1

I[Zi>Z∗
l ]I[Zq>Z∗

l ]
M2

l

= ∂2LEL(w)

∂wq∂wi

,

and, therefore, the matrix G is given by the negative of those second derivatives.
Finally,

x =




w1 − w∗
1

w2 − w∗
2

...

wk − w∗
k


 , C =




1 Z1

1 Z2
...

...

1 Zk


 .

We always use an initial value w0 that is a probability, but it may not satisfy the mean constraint.
Therefore, b0 = (0, µ − Z̄), where Z̄ = ∑

w0iZi . For subsequent iterations, we have b =
(0, 0), as the current value of w already satisfies both constraints.

In the second and better SQP implementation, we introduce new variables

Rl = R(Zl) =
∑

Zj >Zl,δj =1,1≤j≤k

wj ,

one for each right-censored observation Zl . If we identify x in equation (3) as the vector
(w, R), then the LEL function (2) becomes

L(x) = LEL(w, R) =
k∑

i=1,δi=1

log wi +
n−k∑

l=1,δl=0

log Rl.

To find the quadratic approximation of L(x), we need to compute two derivatives. The first
derivatives with respect to (w, R) are

∂LEL(w, R)

∂wi

= 1

wi

, i = 1, 2, . . . , k,

∂LEL(w, R)

∂Rl

= 1

Rl

l = 1, 2, . . . , n − k.
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6 Kun Chen and Mai Zhou

Therefore, the vector a (n × 1) in the quadratic programming problem (3) becomes much
simpler with entries equal to either 1/wi or 1/Rl , depending on the censoring status of the
observation. The second derivatives of L with respect to (w, R) are

∂LEL(w, R)

(∂wi)2
= − 1

w2
i

,
∂2LEL(w, R)

(∂Rl)2
= − 1

R2
l

,
∂2LEL(w, R)

∂wi∂Rl

= 0,

i = 1, 2, . . . , k, l = 1, 2, . . . , n − k.

Therefore, the matrix G (n × n) in the quadratic approximation (3) is diagonal. The ith diag-
onal element of G is either 1/w2

i or 1/R2
l , depending on whether this observation is censored

or not. As G is a diagonal matrix, it is trivial to find the inverse of the decomposition matrix of
G, say H−1, such that HTH = G · H−1 is also a diagonal matrix with ith entries equal to wi

or Rl , depending on the censoring status. Many QP solvers, including the one in R package
quadprog, can directly use H−1 to calculate the solution much faster. Now, because we
introduced new variables Rl , they bring (n − k) additional constraints, that is,

(1) : R1 =
∑

Zj >Z∗
1 ,δj =1,1≤j≤k

wj ,

...

(n − k) : Rn−k =
∑

Zj >Z∗
n−k ,δj =1,1≤j≤k

wj .

These, plus the two original constraints (using the original Z1 < · · · < Zn)

n∑
i=1

wiδi = 1,

n∑
i=1

wiZiδi = µ,

would make the constraint matrix C to be of size n × (n − k + 2). The first two columns of
C for the above two original constraints will be




δ1 δ1Z1

δ2 δ2Z2
...

...

δn δnZn


 .

The rest of the columns depends on the positions of the censored observations. If the observa-
tion is censored, the entry is 1. All entries before this observation are 0. The entries after this
observation are −1 if uncensored and 0 if censored.

Example 2: For a concrete example of second QP implementation, suppose there are
five ordered observations Z = (1, 2, 3, 4, 5) and censoring indicators δ = (1, 0, 1, 0, 1).
The weight vector will be w = (w1, 0, w2, 0, w3) and the probability constraint is that∑

wiδi = w1 + w2 + w3 = 1. Suppose that we want to test a null hypothesis
∑

wiZiδi =
w1 + 3w2 + 5w3 = µ. We have the LEL function

LEL(w, R) = log w1 + log w2 + log w3 + log R1 + log R2,
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Computation of the empirical likelihood ratio 7

where R1 = w2 + w3 and R2 = w3. In this case, the relevant vectors and matrices are

a =




1/w�
1

1/R�
1

1/w�
2

1/R�
2

1/w�
3




, G =




1

(w�
1)

2
0 0 0 0

0
1

(R�
1)

2
0 0 0

0 0
1

(w�
2)

2
0 0

0 0 0
1

(R�
2)

2
0

0 0 0 0
1

(w�
3)

2




,

C =




1 1 0 0

0 0 1 0

1 3 −1 0

0 0 0 1

1 5 −1 −1




, x =




w1 − w�
1

R1 − R�
1

w2 − w�
2

R2 − R�
2

w3 − w�
3




,

where w� and R� are the current values and w and R will be the updated values after one QP.

The vector b0 will depend on the starting value w0. We always use a starting value w0 that
is a probability, but it may not satisfy the weighted mean constraint. After one QP iteration,
the new w will satisfy

∑
wiZiδi = µ and thus for subsequent QP, the vector b should be zero.

Suppose we take w0 to be the discrete uniform probability, then

b0 = (
0, µ − Z̄, 0, 0

)
, b = (

0, 0, 0, 0
)
.

The decomposition of the matrix G is H and we have:

H−1 =




w�
1 0 0 0 0

0 R�
1 0 0 0

0 0 w�
2 0 0

0 0 0 R�
2 0

0 0 0 0 w�
3




.

Remark 1 To compare the two methods, we generated a random sample of size n = 100,
where X is taken from N(1, 1) and C from N(1.5, 2). On the same computer, the first method
took about 25–30 min to find the maximum of the likelihood, whereas, the second method only
took 1–2 s. The difference is remarkable. The computation took about five iterations of QP.
Of course, this comparison is very much hardware-dependent, but it at least is an indication
of what could happen.

Remark 2 The same trick also works for other types of censoring. The key is to introduce
some new variables so that the log-likelihood function is just

∑
log xi . This, for example,

works for interval-censored data where for an interval-censored observation, the log-likelihood
term is log xi , and xi now equals the sum of the probabilities located inside the interval of
observation i.
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8 Kun Chen and Mai Zhou

4. Empirical likelihood ratio computation

The SQP method is a very powerful method to find the maximizer of an LEL function under
constraints, which, in turn, allows us to compute the empirical likelihood ratio statistic. After
we obtain w̃ and ŵ, Wilks’ theorem can then be used to compute the P -value of the observed
statistic. Thus, we can use the empirical likelihood ratio to test hypotheses and construct
confidence intervals.

We have implemented this SQP in the R software [9]. The R function, el.cen.test, that
computes the empirical likelihood ratio for right-censored observations with one mean con-
straint has been packaged as part of the emplik package and posted on CRAN (http://cran.us.r-
project.org). Our implementation of QP in R uses the R functions backsolve(), qr(),
which, in turn, call the corresponding LINPACK routines.

To illustrate the application, we will show the simulation results for right-censored data and
give one example for interval-censored data.

4.1 Confidence interval, real data, right-censored

Veteran’sAdministration Lung cancer study data are available from the R packagesurvival.Q2
We took the subset of survival data for treatment 1 and the small cell group. There are two
right-censored observations. The survival times are 30, 384, 4, 54, 13, 123+, 97+, 153, 59,
117, 16, 151, 22, 56, 21, 18, 139, 20, 31, 52, 287, 18, 51, 122, 27, 54, 7, 63, 392, 10.

We used the empirical likelihood ratio to test the null hypothesis that the mean is equal to
µ (for various values of µ). The 95% confidence interval for the mean survival time is seen to
be [61.708, 144.915], as the empirical likelihood ratio test statistic −2 LogLikRatio = 3.841
when µ = 61.708 and µ = 144.915.

The MLE of the mean is 94.7926, which is the integrated Kaplan–Meier estimator. We see
that the confidence interval is not symmetric around the MLE, and this is typical for confidence
intervals based on the likelihood ratio tests.

4.2 Simulation: right-censored data

We randomly generated 5000 right-censored samples, each of size n = 300, as in equation (1),
where X is taken from N(1, 1) and C from N(1.5, 1). Censoring percentage is around
10–20%. The software R is used in the implementation. We tested the null hypothesis
H0: ∑n

i=1 wiZiδi = µ = 1, which is true for our generated data.
We computed 5000 empirical likelihood ratios using the Kaplan–Meier estimator’s jumps

as (w̃), which maximizes the denominator in equation (9), and used the SQP method to find
(ŵ), which maximizes the numerator under the H0 constraint. The Q–Q plot based on 5000
empirical likelihood ratios and χ2

1 percentiles is shown in figure 1. At point 3.84 (or 2.71),
which is the critical value of χ2

1 with nominal level 5% (or 10%), if the −2 log-likelihood
ratio line is above the dashed line (45◦ line), the probability of rejecting H0 is >5% (or 10%).
Otherwise, the rejection probability is <5% (or 10%). From the Q–Q plot, we can see that
the χ2

1 approximation is pretty good. Only at the tail of the plot, the differences between the
percentiles of −2 log-likelihood ratios and χ2

1 are getting bigger.

4.3 Example – interval-censored case

As mentioned earlier, the SQP method can also be used to compute the (constrained) NPMLE
with interval-censored data. We used the breast cosmetic deterioration data from ref. [9]
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Computation of the empirical likelihood ratio 9

Figure 1. Q-Q plot of −2 log-likelihood ratios versus χ2
(1) percentiles for sample size = 300.

Table 1. Restricted set of intervals and the associated
probabilities.

Left Right H0: µ = 33.5809 H0: µ = 40

4 5 0.04634407 0.01954125
6 7 0.03336178 0.01543886
7 8 0.08866270 0.03917190

11 12 0.07075012 0.03524150
24 25 0.09264346 0.05263571
33 34 0.08178547 0.06119782
38 40 0.12087966 0.09192321
46 48 0.46557274 0.68484974

−2LLR(H0) 0 7.782341

as an example. The data consist of 46 early breast cancer patients, who were treated with
radiotherapy, but there are only eight intervals with positive probabilities. We used SQP to
compute the probabilities for these eight intervals under the constraint

∑8
i=1 Xipi = µ, where

µ is the population mean which we want to test, Xi is the midpoint of each interval, and pi is
the probability of the corresponding interval. Table 1 lists the probabilities for two different
constraints. The mean of the unconstrained NPMLE is 33.5809; therefore, the hypothesis
H0: µ = 33.5809 is equivalent to imposing no constraint and the P -value is 1.

5. Discussion

One drawback of the SQP method is that it becomes more memory/computationally inten-
sive for larger sample sizes. The cost increases at the rate of n2. This is in contrast to the
Lagrange multiplier method mentioned earlier, where (when available) r remains fixed as
the sample size n increases. However, we argue that this is not a major drawback for SQP
because (1) the advantages of the empirical likelihood ratio method are most pronounced for
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10 Kun Chen and Mai Zhou

small-to-medium sample sizes. Often for large samples, there are alternative, equally effective,
and easily computable statistical methods available, as, for example, the Wald method. (2) By
our implementation of the SQP method in R, we can easily handle sample sizes of up to
2000 on today’s average PC (20 s on a 3 GHz, 512 MB PC). With computer hardware getting
cheaper, this drawback should diminish and not pose a major handicap for the SQP method
for most applications.

Of course, not all constrained maximization problems have a solution. If the H0 constraint
is too faraway from the sample mean, this may well happen. See ref. [2, p. 238] for further
discussion. When this happens, we should define the likelihood ratio to be zero, implying that
this is an impossible H0.

There may be simpler methods available to compute w̃, the NPMLE without constraint. In
the case of Example 1, this is the well-known Kaplan–Meier estimator.
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