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Summary

In most applications, the data may be interval-censored. By interval-censored data,

we mean that a random variable of interest is known only to lie in an interval, instead

of being observed exactly. In such cases, the only information we have for each

individual is that their event time falls in an interval, but the exact time is unknown.

A nonparametric estimate of the survival function can also be found in such interval-

censored situations. The survival function is perhaps the most important function

in medical and health studies. In this work we describe and illustrate the iterative

procedure proposed by Turnbull (1976) to estimate such function. This procedure

has been implemented in the software R and the code used is provided in this work.
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1 Introduction

Situations where the observed response for each individual under study is either an

exact survival time or a censoring time are common in practice. Other situations,

however, can occur, and amongst them we find the longitudinal studies, where the

individuals are followed for a pre-fixed time period or visited periodically for a fixed

number of times. In this context, the time Ti (i = 1, · · · , n) until the occurrence of the

event of interest for each individual is only known (whenever it occurs) to be within

the interval between visits, ie, between the visit in time Li and the visit in time Ui.

Note that in such studies, the survival times Ti are no longer known exactly. It is

only known that the event of interest has occurred within the interval (Li, Ui] with
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Li < Ti ≤ Ui. Furthermore, note that if the event occurs exactly at the moment of

a visit, which is very little probable but can happen, then we have an exact survival

time. In this case it is assumed that Ti = Li = Ui.

On the other hand, it is known for the individuals that are right censored that

the event of interest did not occur until the last visit but it can happen at any time

from that moment on. We therefore assumed in this case that Ti can occur within

the interval (Li,∞) with Li being equal to the period of time from the beginning of

the study until the last visit and Ui = ∞.

Similarly, it is known for the individuals that are left censored, that the event of

interest have occurred before the first visit and, hence, we assume that Ti has falls in

the interval (0, Ui] with Li = 0 representing the beginning of the study and Ui is the

period of time from the beginning of the study until the first visit.

Note from what we have presented so far that exact survival times as well as right

and left censored data, are all special cases of interval survival data with Li = Ui

for exact times, Ui = ∞ for right censoring and Li = 0 for left censoring. We can

therefore state that interval survival data generalize any situation with combinations

of survival times (exact or interval) and right and left censoring that can occur in

survival studies.

As usual in the analysis of non-interval survival data, here it is also of inter-

est to estimate the survival function S(t) and to assess the importance of potencial

prognostic factors.

Few statistical softwares allow for such data, and for this reason a common prac-

tice amongst data analysts is to assume that the event occurring within the interval

(Li, Ui], has occurred either at the upper/lower limit of the interval or, else at the mid-

dle point of each interval. Some authors, amongst them Rücker and Messerer (1988),

Odell et al.(1992) and Dorey et al.(1993), state that assuming interval survival times

as exact times can lead to biased estimates as well as results and conclusions that are

not fully reliable.

In this work we describe a nonparametric procedure for estimation of the survival

function for interval survival data. This procedure has been implemented in R1 and

it is available in the appendix.

2 Nonparametric interval-censored survival estimation

As the main objective is to estimate the survival function and investigate the im-

portance of potential prognostic factors upon interval survival times, the number of

factors under study should depend on the purpose of the study. The nonparametric

procedure described here should be seen simply as an initial investigation tool and

1The R project is a free and open source software for statistical data analysis and can be

dowloaded from http://www.r-project.org
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descriptive of the survival times. It is therefore indicated for situations where one or

two prognostic factors are of interest or for investigation of several factors one by one

as an attempt to select those of greater importance. Such factors should preferably

be qualitative and with few levels.

This does not imply that quantitative variables cannot be used, since these are

categorised. Ages, for example, can be classified into three or four categories such as

0 to 5 years, 5 to 10 years and so on.

Since the event of interest is not observed for all individuals, an indicator variable

for censoring should be defined. Some lines of a dataset are presented bellow to

illustrate how a dataset should be organized for an analyses in R. In this example,

it is assumed that for each individual it is known the upper and lower limits of the

intervals within which the event of interest has occurred as well as the therapy (1 or

0) assigned to each individual. The censoring indicator variable is also assumed to

be known.

Table 1: Lines of a dataset.

left right therapy cens

8 12 1 1

24 31 1 1

17 27 1 1

17 NA 1 0

13 NA 0 0

11 15 0 1

.. .. .. ..

Note that “NA” means that Ui = ∞ and that the ith observation is a right

censoring.

In this section we shall present an analog Product-Limit estimator of the survival

function for interval-censored data. This estimator, which has no closed form, is based

on an iterative procedure and has been suggested by Turnbull (1976).

To construct the estimator, let 0 = τ0 < τ1 < τ2 < · · · < τm be a grid of time

which includes all the points Li and Ui for i = 1, . . . , n. For the ith observation,

define a weight αij to be 1 if the interval (τj−1, τj) is contained in the interval (Li, Ui]

and 0, otherwise. The weight αij indicates whether the event which occurs in the

interval (Li, Ui] could have occurred at τj. An initial guess at S(τj) is made and the

Turnbull´s algorithm is as follows:

• Step 1: Compute the probability of an event occurring at time τj by

pj = S(τj−1) − S(τj) j = 1, . . . ,m;
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• Step 2: Estimate the number of events which occurred at τj by

dj =
n∑

i=1

αijpj∑m
k=1

αijpk

j = 1, . . . ,m;

• Step 3: Compute the estimated number at risk at time τj by Yj =
∑m

k=j dk;

• Step 4: Compute the updated Product-Limit estimator using the pseudo data

found in Steps 2 and 3. If the updated estimate of S is close to the old version

of S for all τj´s, stop the iterative process, otherwise repeat Steps 1-3, using

the updated estimate of S.

As no standard statistical package produces the survival curve estimate based on

Turnbull´s algorithm we have implemented the algorithm in R which is available in

the appendix. The code uses as an initial guess of S(τj) the estimates obtained from

the Kaplan-Meier estimator.

2.1 Example

The study we use for illustrating the method and the usage of the R code is a retro-

spective study presented by Klein and Moeschberger (1997) which was carried out to

compare the cosmetic effects of radiotherapy alone versus radiotherapy and adjuvant

chemotherapy on women with early breast cancer.

To compare the two treatments, a retrospective study of 46 radiation only and

48 radiation plus chemotherapy patients was conducted. Patients was observed ini-

tially every 4-6 months, but, as their recovery progressed, the interval between visits

lengthened. The event of interest was the time to first appearance of moderate or se-

vere breast retraction. As the patients were observed only at some random times, the

exact time, Ti, of breast retraction is known only to fall within the interval between

visits.

Patients with no moderate or severe breast retraction until the last visit were

classified as right-censored and then the end point of their intervals were assumed to

be Ui = ∞ as well as Li were assumed as the time from the begining to the last visit.

The data are shown in Table 2.

Using the Turnbull’s algorithm we obtained the estimated survival functions for

radiotherapy only and radiation plus chemotherapy groups showed in Figure 1. Note

that the estimated survival curves do not show striking differences from 0 to 18

months. From 18 onwards, however, a fast decay of the curve is seen for patients

given radiotherapy plus chemotherapy whilst this does not happen for those given only

radiotherapy. Note, for instance, that only 11.06% of the patients in the radiotherapy

plus chemotherapy group is estimated to be free of any evidence of breast retraction at

time t = 40 months against 47.37% in the radiotherapy group at this very same point
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Table 2: Time to cosmetic deterioration in breast cancer patients with two treatments.

(0,7]; (0,8]; (0,5]; (4,11]; (5,12]; (5,11]; (6,10]; (7,16]; (7,14]; (11,15];

(11,18]; ≥15; ≥17; (17,25]; (17,25]; ≥18; (19,35]; (18,26]; ≥22; ≥24;

Radiotherapy ≥24; (25,37]; (26,40]; (27;34]; ≥32; ≥33; ≥34; (36,44]; (36,48]; ≥36;

≥36; (37,44]; ≥37; ≥37, ≥37; ≥38, ≥40; ≥45; ≥46; ≥46; ≥46; ≥46;

≥46; ≥46; ≥46; ≥46

(0,22]; (0,5]; (4,9]; (4,8]; (5,8]; (8,12]; (8,21]; (10,35]; (10,17]; (11,13];

Radiotherapy ≥11; (11,17]; ≥11; (11,20]; (12,20]; ≥13; (13,39]; ≥13; ≥13; (14,17];

+ (14,19]; (15,22]; (16,24]; (16,20]; (16,24]; (16,60]; (17,27]; (17,23];

Chemotherapy (17,26]; (18,25]; (18,24]; (19,32]; ≥21; (22,32]; ≥23; (24,31]; (24,30];

(30,34]; (30,36]; ≥31; ≥32; (32,40]; ≥34; ≥34; ≥35; (35,39]; (44,48];

≥48

in time. A longer time to cosmetic deterioration for patients given only radiotherapy

is, therefore, indicated from the estimated survival curves presented in Figure 1.
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Figure 1: Estimated survival based on interval-censored data.

Using the midpoint of each interval, which is a common practice amongst ana-

lysts due to the lack of well-known statistical methodology and available software, and

then applying the Kaplan-Meier method we obtained the estimated survival curves

presented in Figure 2. The curves estimated previously are also shown in the fig-

ure. Comparing the curves we can see that the estimates obtained using both, the

midpoints and the intervals, are very similar from each other at several times but

they trend to be under or overestimed at others. Although not shown here, under

or overestimation become more evident if it is assumed that the event occurred at

the end or at the beginning of each interval instead of at the midpoint. The range of

each interval also contributes for the magnitude of these differences. They are more
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accentuated as the range of each interval increases.
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Figure 2: Estimated survival functions using midpoints and intervals.

From these results and according to some authors such as Lindsey et al. (1998),

the analysis of interval-censored data assuming that the event occurred at the end

(or beginning or midpoint) of each interval, and then applying methods for standard

time-to-event data can lead to invalid inferences. Thus, analysts that have been using

methods for standard time-to-event data for analyzing interval-censored data should

be not too confident at their conclusions.
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APPENDIX A - R commands for obtaining the survival curves

===============================================

Survival curves using intervals - Figure 1

===============================================

require(survival)

source("Turnbull.R") # Turnbull.R available in the Appendix B

dat <- read.table(’breast.txt’,header=T) # breast.txt available in the Appendix C

dat1 <- dat[dat$ther==1,]

dat1$right[is.na(dat1$right)] <- Inf

tau <- cria.tau(dat1)

p <- S.ini(tau=tau)

A <- cria.A(data=dat1,tau=tau)

tb1 <- Turnbull(p,A,dat1)

tb1

dat1 <- dat[dat$ther==0,]

dat1$right[is.na(dat1$right)] <- Inf

tau <- cria.tau(dat1)

p <- S.ini(tau=tau)

A <- cria.A(data=dat1,tau=tau)

tb2 <- Turnbull(p,A,dat1)

tb2

plot(tb1$time,tb1$surv,lty=1, col = 4,type="s",ylim=c(0,1),xlim=range(c(0,60)),

xlab="Tempos (meses)",ylab="S(t)")

lines(tb2$time,tb2$surv,lty=4,col=2,type="s")

legend(1,0.3,lty=c(1,4),col=c(4,2),c("Radioterapia","Radioterapia + Quimioterapia"), bty="n",cex=0.8)

===============================================

Survival curves using midpoints - Figure 2

===============================================

p <-dat$left+((dat$right-dat$left)/2)

pm <-ifelse(is.finite(p),p,dat$left)

cens <- ifelse(is.finite(p),1,0)

ekm<-survfit(Surv(pm,cens)~ther,type=c("kaplan-meier"),data=dat)

plot(tb1$time,tb1$surv,lty=1,type="s",col=4,ylim=c(0,1),xlim=c(0,50),xlab="Tempos (meses)",ylab="S(t)")

lines(tb2$time,tb2$surv,lty=1,col=2,type="s")

lines(ekm[1]$time,ekm[1]$surv,type="s",col=2,lty=2)

lines(ekm[2]$time,ekm[2]$surv,type="s",col=4,lty=2)

legend(3,0.30,lty=2,col=4, "Radiotherapy using midpoints", bty="n",cex=0.8)

legend(3,0.25,lty=1,col=4, "Radiotherapy using intervals", bty="n",cex=0.8)

legend(3,0.2,lty=2,col=2,"Radio + Chemotherapy using midpoints", bty="n",cex=0.8)

legend(3,0.15,lty=1,col=2,"Radio + Chemotherapy using intervals", bty="n",cex=0.8)
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APPENDIX B - Turnbull.R function

cria.tau <- function(data){

l <- data$left

r <- data$right

tau <- sort(unique(c(l,r[is.finite(r)])))

return(tau)

}

S.ini <- function(tau){

m<-length(tau)

ekm<-survfit(Surv(tau[1:m-1],rep(1,m-1)))

So<-c(1,ekm$surv)

p <- -diff(So)

return(p)

}

cria.A <- function(data,tau){

tau12 <- cbind(tau[-length(tau)],tau[-1])

interv <- function(x,inf,sup) ifelse(x[1]>=inf & x[2]<=sup,1,0)

A <- apply(tau12,1,interv,inf=data$left,sup=data$right)

id.lin.zero <- which(apply(A==0, 1, all))

if(length(id.lin.zero)>0) A <- A[-id.lin.zero, ]

return(A)

}

Turnbull <- function(p, A, data, eps=1e-3, iter.max=200, verbose=FALSE){

n<-nrow(A)

m<-ncol(A)

Q<-matrix(1,m)

iter <- 0

repeat {

iter <- iter + 1

diff<- (Q-p)

maxdiff<-max(abs(as.vector(diff)))

if (verbose)

print(maxdiff)

if (maxdiff<eps | iter>=iter.max)

break

Q<-p

C<-A%*%p

p<-p*((t(A)%*%(1/C))/n)

}

cat("Iterations = ", iter,"\n")

cat("Max difference = ", maxdiff,"\n")

cat("Convergence criteria: Max difference < 1e-3","\n")

dimnames(p)<-list(NULL,c("P Estimate"))

surv<-round(c(1,1-cumsum(p)),digits=5)

right <- data$right

if(any(!(is.finite(right)))){

t <- max(right[is.finite(right)])

return(list(time=tau[tau<t],surv=surv[tau<t]))

}

else

return(list(time=tau,surv=surv))

}
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APPENDIX C - breast.txt

left right ther cens

0 7 1 1

0 8 1 1

0 5 1 1

4 11 1 1

5 12 1 1

5 11 1 1

6 10 1 1

7 16 1 1

7 14 1 1

11 15 1 1

11 18 1 1

15 NA 1 0

17 NA 1 0

17 25 1 1

17 25 1 1

18 NA 1 0

19 35 1 1

18 26 1 1

22 NA 1 0

24 NA 1 0

24 NA 1 0

25 37 1 1

26 40 1 1

27 34 1 1

32 NA 1 0

33 NA 1 0

34 NA 1 0

36 44 1 1

36 48 1 1

36 NA 1 0

36 NA 1 0

37 44 1 1

37 NA 1 0

37 NA 1 0

37 NA 1 0

38 NA 1 0

40 NA 1 0

45 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

46 NA 1 0

0 22 0 1

0 5 0 1

4 9 0 1

4 8 0 1

5 8 0 1

8 12 0 1

8 21 0 1

10 35 0 1

10 17 0 1

11 13 0 1

11 NA 0 0

11 17 0 1

11 NA 0 0

11 20 0 1

12 20 0 1

13 NA 0 0

13 39 0 1

13 NA 0 0

13 NA 0 0

14 17 0 1

14 19 0 1

15 22 0 1

16 24 0 1

16 20 0 1

16 24 0 1

16 60 0 1

17 27 0 1

17 23 0 1

17 26 0 1

18 25 0 1

18 24 0 1

19 32 0 1

21 NA 0 0
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22 32 0 1

23 NA 0 0

24 31 0 1

24 30 0 1

30 34 0 1

30 36 0 1

31 NA 0 0

32 NA 0 0

32 40 0 1

34 NA 0 0

34 NA 0 0

35 NA 0 0

35 39 0 1

44 48 0 1

48 NA 0 0
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