Homework 1

STA321 Spring 2009

Due Jan. 29

1. Let Y be a binomial (n, p) random variable with parameter p (n is known). Let $\hat{p} = Y/n$ Show that $(\hat{p})^2$ is NOT an unbiased estimator of p^2.

2. Let X_1, \ldots, X_n be iid \sim Bernoulli(p). Define $\hat{p} = (1/n) \sum X_i$.
 a) Compute the MSE for estimating p with \hat{p}. Show \hat{p} is a consistent estimator of p. (we did this in class, the MSE is $p(1-p)/n$)
 b) Let $\tilde{p} = (0.5 + \sum X_i)/(n + 1)$. Compute the MSE of \tilde{p} and show \tilde{p} is also consistent.
 c) When $n = 100$ and $p = 0.5$, which estimator (\hat{p} or \tilde{p}) is the better estimator in terms of MSE? When $p = 0.1$ and $n = 100$, which is the better estimator?
 d) When $n = 100$, and $p = 0.01$, which estimator is the better estimator in terms of MSE?

3. Let X_1, \ldots, X_n be iid $\sim N(\mu, \sigma^2)$ where both μ and σ^2 are unknown, $-\infty < \mu < \infty$, $0 < \sigma^2 < \infty$. (Please note, here the variance σ^2 is the parameter not the standard deviation σ)
 a) compute the MSE of estimator s^2 as an estimator of σ^2. (s^2 is the so called sample variance).
 b) Let us try a new estimator of σ^2: $\hat{\sigma}^2 = C s^2$, for some positive constant C.

Find the best constant C in the sense that minimizes the MSE.