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2 CHAPTER 9. TIME VARYING (OR TIME-DEPENDENT) COVARIATES

Our Goal here

So far, we’ve been considering the following Cox PH model:

λ(t,Z) = λ0(t) exp(βZ) = λ0(t) exp

⎛
⎝ p∑

j=1

βjZj

⎞
⎠

where the covariates Zj are measured at study entry (t = 0).

Important feature of this model:

The hazard ratio λ(t,Z=z)

λ(t,Z=0)
= exp(βz) depends on the covariates

z1, ..., zp, but not on time t.

Now we want to

• relax this assumption, and allow the hazard ratio to depend
on time t.

• allow to incorporate time-varying covariates
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9.1 Examples to motivate time-dependent covariates

Stanford Heart transplant example:

Variables:

• survival - days since program enrollment until death or censoring

• dead - indicator of death (1) or censoring (0)

• transpl - whether patient ever had transplant
(1 if yes, 2 if no)

• surgery - previous heart surgery prior to program (1=yes, 0=no)

• age - age at time of acceptance into program

• wait - days from acceptance into program until transplant surgery (=. for those without
transplant)
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Initially, a ‘Cox PH model’ was fit for predicting survival time:

λ(t,Z) = λ0(t) exp(β1 ∗ transpl + β2 ∗ surgery + β3 ∗ age)

Does this fit in the framework we have seen so far?

Why or why not?
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λ(t,Z) = λ0(t) exp(β1 ∗ transpl + β2 ∗ surgery + β3 ∗ age) (9.1)

• As the covariate ‘transpl’ really changes over time and gets a value de-

pending on how long the patient has been followed . . .

this is not a regular Cox PH model as we know it.

• This model could give misleading results, since patients who died more

quickly had less time available to get transplants. A model with a time-

dependent indicator of whether a patient had a transplant at each point

in time might be more appropriate:

λ(t,Z) = λ0(t) exp(β1 ∗ trnstime(t) + β2 ∗ surgery + β3 ∗ age) (9.2)

where trnstime(t) = 1 if transpl=1 and wait< t
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SAS code for these two models

Time-independent covariate for transpl:

proc phreg data=stanford;

model survival*dead(0)=transpl surgery age;

run;

Time-dependent covariate for transpl:

proc phreg data=stanford;

model survival*dead(0)=trnstime surgery age;

if wait>survival or wait=. then trnstime=0;

else trnstime=1;

run;
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If we add time-dependent covariates or interactions with time to the Cox

proportional hazards model, then it is not a “proportional hazards” model

any longer.

We refer to it as an extended Cox model .

Comparison with a single binary predictor (like heart transplant):

• The ‘Cox PH model’ 9.1 would compare the survival distributions between

those without a transplant (ever) to those with a transplant. A subject’s

transplant status at the end of the study would determine which category

they were put into for the entire study follow-up. This does not make

much sense.

• An extended Cox model 9.2 would compare the risk of an event between al-

ready transplanted and non-yet-transplanted at each event time, and would

re-evaluate which risk group each person belonged in based on whether

they’d had a transplant by that time.
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Recidivism Example: (see Allison, p.42) 432 male inmates were
followed for one year after release from prison, to evaluate risk
of re-arrest as function of financial aid (fin), age at release (age),
race (race), full-time work experience prior to first arrest (wexp),
marital status (mar), parole status (paro=1 if released with pa-
role, 0 otherwise), and number of prior convictions (prio). Data
were also collected on employment status over time during the
year.

Time-independent model:
includes employment status of the individual at the beginning of
the study (1 if employed, 0 if unemployed), or perhaps at any
point during the year.

Time-dependent model:
However, employment status changes over time, and it may be
the more recent employment status that would affect the hazard
for re-arrest. E.g., we might want to define a time-dependent
covariate for each month of the study that indicates whether the
individual was employed during the past month.
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9.2 Extended Cox Model

Framework:
For individual i, suppose we have their observation time, failure
indicator, and a summary of their covariate values over time:

(Xi, δi, {Zi(t), t ∈ [0, Xi]}),

{Zi(t), t ∈ [0, Xi]} represents the covariate path for the i-th indi-
vidual while they are in the study, and the covariates can take
different values at different times.

Assumption:

• conditional on an individual’s covariate history, the Cox model
for the hazard holds:

λ(t; {Zi(u), u ∈ [0, t]}) = λ(t; Zi(t)) = λ0(t) eβZi(t)

This means we record in Z(t) the part of the history that influ-
ences the hazard at time t.
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Survivor function:

S(t; Z) = exp{−
∫ t

0

exp(βZ(u)) λ0(u)du}
and depends on the values of the time dependent variables over
the interval from 0 to t.

This is the classic formulation of the time varying Cox regression
survival model.

For Z(u) is step function with one change point at t1 < t :

S(t; Z) = exp

{
−

[∫ t1

0

exp(βZ(u)) λ0(u)du +

∫ t

t1

exp(βZ(u)) λ0(u)du

]}

= exp
{
−

[
exp(βZ(0))

∫ t1
0 λ0(u)du + exp(βZ(t1))

∫ t

t1
λ0(u)du

]}

And prediction??
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Kinds of time-varying covariates:

• internal covariates:

variables that relate to the individuals, and can only be mea-
sured when an individual is alive, e.g. white blood cell count,
CD4 count

• external covariates:

– variable which changes in a known way, e.g. age, dose of
drug (if non-dynamic drug regime)

– variable that exists totally independently of all individuals,
e.g. air temperature

– time itself
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9.3 Types of applications and Examples

The extended Cox model is used:

I. When important covariates change during a study

• Framingham Heart study

5209 subjects followed since 1948 to examine relationship be-
tween risk factors and cardiovascular disease. A particular
example:

Outcome: time to congestive heart failure
Predictors: age, systolic blood pressure, # cigarettes per day



9.3. TYPES OF APPLICATIONS AND EXAMPLES 13

• Liver Cirrhosis (Andersen and Gill, p.528)

Clinical trial comparing treatment to placebo for cirrhosis.
The outcome of interest is time to death. Patients were seen
at the clinic after 3, 6 and 12 months, then yearly.

Fixed covariates: treatment, gender, age (at diagnosis)
Time-varying covariates: alcohol consumption, nutritional sta-
tus, bleeding, albumin, bilirubin, alkaline phosphatase and
prothrombin.

• The paper on obesity and heart failure...

• Recidivism Study (Allison, p.42)
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II. For cross-over studies, to indicate change in treatment

• Stanford heart study (Cox and Oakes p.129)
Between 1967 and 1980, 249 patients entered a program at
Stanford University where they were registered to receive a
heart transplant. Of these, 184 received transplants, 57 died
while waiting, and 8 dropped out of the program for other rea-
sons. Does getting a heart transplant improve survival? Here
is a sample of the data:

Waiting transplant? survival post total final

time transplant survival status

------------------------------------------------------------

49 2 . . 1

5 2 . . 1

0 1 15 15 1

35 1 3 38 1

17 2 . . 1

11 1 46 57 1

etc

(survival is not indicated above for those without transplants, but was available in the dataset)

Naive approach: Compare the total survival of transplanted and non-

transplanted.

Problem: Length Bias!



9.3. TYPES OF APPLICATIONS AND EXAMPLES 15

III. For Surrogate Outcome Analysis

For example, in cancer clinical trials, “tumor response” (or shrink-
ing of the tumor) is often used as an outcome. However, clinicians
want to know whether tumor response correlates with survival.

For this purpose, we can fit an extended Cox model for time to
death, with tumor response as a time dependent covariate.

Remember: association �= causation !
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IV. For testing the PH assumption

For example, we can fit these two models:

(1) Time independent covariate Z1

λ(t,Z) = λ0(t) exp(β1 ∗ Z1)

The hazard ratio for Z1 is exp(β1).

(2) Time dependent covariate Z1

λ(t,Z) = λ0(t) exp(β1 ∗ Z1 + β2 ∗ Z1 ∗ t)

The hazard ratio for Z1 is exp(β1 + β2t).
(note: we may want to replace t by (t−t0), so that exp(β1) represents HR at some convenient

time, like the median survival time.)

A test of the parameter β2 is a test of the PH assumption.

(how do we get the test? ...using the Wald test from the out-
put of second model, or LR test formed by comparing the log-
likelihoods of the two models)
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9.4 Partial likelihood with time-varying covariates

Starting out just as before, relying on non-informative censoring
Suppose there are K distinct failure (or death) times, and let
(τ1, ....τK) represent the K ordered, distinct death times. For now,
assume there are no tied death times.

Risk Set: Let R(t) = {i : xi ≥ t} denote the set of individuals who
are “at risk” for failure at time t.

Failure: Let ij denote the label or identity of the individual who
fails at time τj, including the value of their time-varying covariate
during their time in the study

{Zij(t), t ∈ [0, τj]}

History: Let Hj denote the “history” of the entire data set,
up to the j-th death or failure time, including the time of the
failure, but not the identity of the one who fails, also including
the values of all covariates for everyone up to and including time
τj.
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Partial Likelihood:

We retain the previous construction of the partial likelihood.

It can be written as

L(β) =

d∏
j=1

P (ij|Hj)

=

d∏
j=1

λ(τj; Zij(τj))∑
�∈R(τj)

λ(τj; Z�(τj))
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Under the PH assumption, this is:

L(β) =

d∏
j=1

exp(βZij(τj))∑
�∈R(τj)

exp(βZ�(τj))

What if Z is not measured for person � at time τj?

• use the most recent value (assumes step function)

• interpolate

• impute based on some model

Inference (i.e. estimating the regression coefficients, constructing
score tests, etc.) proceeds similarly to standard case. The main
difference is that the values of Z will change at each risk set.

It is very easy to write down a Cox model with time-dependent
covariates, but much harder to fit (computationally) and inter-
pret!
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Old Example revisited: Group 0: 4+, 7, 8+, 9, 10+

Group 1: 3, 5, 5+, 6, 8+

Let Z1 be group, and add another fixed covariate Z2

ID fail censor Z1 Z2 e(β1Z1+β2Z2)

1 3 1 1 1 eβ1+β2

2 4 0 0 1 eβ2

3 5 1 1 1 eβ1+β2

4 5 0 1 0 eβ1

5 6 1 1 1 eβ1+β2

6 7 1 0 0 1
7 8 0 0 1 eβ2

8 8 0 1 0 eβ1

9 9 1 0 1 eβ2

10 10 0 0 0 1

ordered Partial
failure Individuals Likelihood

time (τj) at risk failure ID contribution

3

5

6

7

9
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Example continued: λ(t) = λ0(t) exp (β1Z1 + β2Z2(t))

Now suppose Z2 (a completely different covariate) is a time varying covariate:

Z2(t)
ID fail censor Z1 3 4 5 6 7 8 9

1 3 1 1 0
2 4 0 0 1 1
3 5 1 1 1 1 1
4 5 0 1 0 0 0
5 6 1 1 0 0 0 0
6 7 1 0 0 0 0 1 1
7 8 0 0 0 0 0 0 0 0
8 8 0 1 0 0 0 0 1 1
9 9 1 0 0 0 0 1 1 1 1
10 10 0 0 0 1 1 1 1 1 1

ordered Partial
failure Individuals Likelihood

time (τj) at risk failure ID contribution

3

5

6

7

9



22 CHAPTER 9. TIME VARYING (OR TIME-DEPENDENT) COVARIATES

SAS solution to previous examples

Title ’Ph regression: small class example’;

data ph;

input time status group z3 z4 z5 z6 z7 z8 z9;

cards;

3 1 1 0 . . . . . .

4 0 0 1 1 . . . . .

5 1 1 1 1 1 . . . .

5 0 1 0 0 0 . . . .

6 1 1 0 0 0 0 . . .

7 1 0 0 0 0 1 1 . .

8 0 0 0 0 0 0 0 0 .

8 0 1 0 0 0 0 1 1 .

9 1 0 0 0 0 1 1 1 1

10 0 0 0 1 1 1 1 1 1

run;

proc phreg ;

model time*status(0)=group z3 ;

run;

proc phreg ;

model time*status(0)=group z ;

z=z3;

if (time >= 4) then z=z4;

if (time >= 5) then z=z5; etc.; run;
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Model with z3:

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 16.953 13.699 3.254 with 2 DF (p=0.1965)

Score . . 3.669 with 2 DF (p=0.1597)

Wald . . 2.927 with 2 DF (p=0.2315)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

GROUP 1 1.610529 1.21521 1.75644 0.1851 5.005

Z3 1 1.360533 1.42009 0.91788 0.3380 3.898
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Model with time-dependent Z:

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 16.953 14.226 2.727 with 2 DF (p=0.2558)

Score . . 2.725 with 2 DF (p=0.2560)

Wald . . 2.271 with 2 DF (p=0.3212)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

GROUP 1 1.826757 1.22863 2.21066 0.1371 6.214

Z 1 0.705963 1.20630 0.34249 0.5584 2.026
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The Stanford Heart Transplant data

data heart;

infile ’heart.dat’;

input wait trans post surv status ;

run;

data heart;

set heart;

if trans=2 then surv=wait;

run;

*** naive analysis;

proc phreg;

model surv*status(2)=tstat;

tstat=2-trans;

*** analysis with time-dependent covariate;

proc phreg;

model surv*status(2)=tstat;

tstat = 0;

if (trans=1 and surv >= wait) then tstat = 1;

run;

The second model took about twice as long to run as the first model, which is usual.
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RESULTS for Stanford Heart Transplant data:

Naive model with fixed transplant indicator:

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 718.896 674.699 44.198 with 1 DF (p=0.0001)
Score . . 68.194 with 1 DF (p=0.0001)
Wald . . 51.720 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

TSTAT 1 -1.999356 0.27801 51.72039 0.0001 0.135

Model with time-dependent transplant indicator:

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1330.220 1312.710 17.510 with 1 DF (p=0.0001)
Score . . 17.740 with 1 DF (p=0.0001)
Wald . . 17.151 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

TSTAT 1 -0.965605 0.23316 17.15084 0.0001 0.381
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Recidivism Example:

Hazard for arrest within one year of release from prison:

Model without employment status

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1350.751 1317.496 33.266 with 7 DF (p=0.0001)
Score . . 33.529 with 7 DF (p=0.0001)
Wald . . 32.113 with 7 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

FIN 1 -0.379422 0.1914 3.931 0.0474 0.684
AGE 1 -0.057438 0.0220 6.817 0.0090 0.944
RACE 1 0.313900 0.3080 1.039 0.3081 1.369
WEXP 1 -0.149796 0.2122 0.498 0.4803 0.861
MAR 1 -0.433704 0.3819 1.290 0.2561 0.648
PARO 1 -0.084871 0.1958 0.188 0.6646 0.919
PRIO 1 0.091497 0.0287 10.200 0.0014 1.096

What are the important predictors of recidivism?
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Recidivism Example: (cont’d)

Now, we use the indicators of employment status for each of the
52 weeks in the study, recorded as emp1-emp52.

We can fit the model in 2 different ways:

proc phreg data=recid;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

do i=1 to 52;

if week=i then employed=emp(i);

end;

run;

*** a shortcut;

proc phreg data=recid;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

employed=emp(week);

run;

The second way takes 23% less time than the first way, but the results are the

same.
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Recidivism Example: Output

Model WITH employment as time-dependent covariate

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

FIN 1 -0.356722 0.1911 3.484 0.0620 0.700

AGE 1 -0.046342 0.0217 4.545 0.0330 0.955

RACE 1 0.338658 0.3096 1.197 0.2740 1.403

WEXP 1 -0.025553 0.2114 0.015 0.9038 0.975

MAR 1 -0.293747 0.3830 0.488 0.4431 0.745

PARO 1 -0.064206 0.1947 0.109 0.7416 0.938

PRIO 1 0.085139 0.0290 8.644 0.0033 1.089

EMPLOYED 1 -1.328321 0.2507 28.070 0.0001 0.265

Is current employment important?

Do the other covariates change much?

Can you think of any problem with using current employment as a predictor?
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Another option for assessing impact of employment

Allison suggests using the employment status of the past week
rather than the current week, as follows:

proc phreg data=recid;

where week>1;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

employed=emp(week-1);

run;

The coefficient for employed changes from -1.33 to -0.79, so the risk ratio is

about 0.45 instead of 0.27. It is still highly significant with χ2 = 13.1.

Does this model improve the causal interpretation?

Other options for time-dependent covariates:

• multiple lags of employment status (week-1, week-2, etc.)

• cumulative employment experience (proportion of weeks worked)
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9.5 Some cautionary notes

• Time-varying covariates must be carefully constructed to ensure inter-

pretability

• There is no point adding a time-varying covariate whose value changes

the same as study time ..... you will get the same answer as using a fixed

covariate measured at study entry. For example, suppose we want to study

the effect of age on time to death.

We could

1. use age at start of the study as a fixed covariate

2. age as a time varying covariate

However, the results will be the same! Why?
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Using time-varying covariates to assess model fit
Suppose we have just fit the following model:

λ(t;Z) = λ0(t) exp(β1Z1 + β2Z2 + . . . βpZp)

E.g., the nursing home data with gender, marital status and
health.

Suppose we want to test the proportionality assumption on health
(Zp)

Create a new variable:

Zp+1(t) = Zp ∗ γ(t)

where γ(t) is a known function of time, such as

γ(t) = t

or log(t)

or e−ρt

or I{t>t∗}
Then testing H0 : βp+1 = 0 is a test for non-proportionality
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Illustration: Colon Cancer data

*** model without time*covariate interaction;

proc phreg data=surv;

model survtime*censs(1) = trtm stagen ;

Model without time*stage interaction

Event and Censored Values

Percent
Total Event Censored Censored

274 218 56 20.44

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1959.927 1939.654 20.273 with 2 DF (p=0.0001)
Score . . 18.762 with 2 DF (p=0.0001)
Wald . . 18.017 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTM 1 0.016675 0.13650 0.01492 0.9028 1.017
STAGEN 1 -0.701408 0.16539 17.98448 0.0001 0.496
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*** model WITH time*covariate interaction;

proc phreg data=surv ;

model survtime*censs(1) = trtm stagen tstage ;

tstage=stagen*exp(-survtime/1000);

Model WITH time*stage interaction

Testing Global Null Hypothesis: BETA=0

Without With
Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1959.927 1902.374 57.553 with 3 DF (p=0.0001)
Score . . 35.960 with 3 DF (p=0.0001)
Wald . . 19.319 with 3 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk
Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTM 1 0.008309 0.13654 0.00370 0.9515 1.008
STAGEN 1 1.402244 0.45524 9.48774 0.0021 4.064
TSTAGE 1 -8.322371 2.04554 16.55310 0.0001 0.000

Like Cox and Oakes, we can run a few different models
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Time-varying covariates in Stata

Create a data set with an ID column, and one line per person
for each different value of the time varying covariate.

. infile id time status group z using cox4_stata.dat

or

. input id time status group z

1 3 1 1 0

2 5 0 1 0

3 5 1 1 1

4 6 1 1 0

5 6 0 1 0

5 8 0 1 1

6 4 0 0 1

7 5 0 0 0

7 7 1 0 1

8 8 0 0 0

9 5 0 0 0

9 9 1 0 1

10 3 0 0 0

10 10 0 0 1

. end

. stset time status

. cox time group z, dead(status) tvid(id)
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------------------------------------------------------------------------------
time |

status | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--------------------------------------------------------------------

group | 1.826757 1.228625 1.487 0.137 -.5813045 4.234819
z | .7059632 1.206304 0.585 0.558 -1.65835 3.070276

------------------------------------------------------------------------------
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Time-varying covariates in Splus

Create a data set with start and stop values of time:

id start stop status group z

1 0 3 1 1 0

2 0 5 0 1 0

3 0 5 1 1 1

4 0 6 1 1 0

5 0 6 0 1 0

5 6 8 0 1 1

6 0 4 0 0 1

7 0 5 0 0 0

7 5 7 1 0 1

8 0 8 0 0 0

9 0 5 0 0 0

9 5 9 1 0 1

10 0 3 0 0 0

10 3 10 0 0 1



38 CHAPTER 9. TIME VARYING (OR TIME-DEPENDENT) COVARIATES

Then the Splus commands and results are:

Commands:

y_read.table("cox4_splus.dat",header=T)

coxph(Surv(y$start,y$stop,y$status) ~ cbind(y$group,y$z))

Results:

Alive Dead Deleted

9 5 0

coef exp(coef) se(coef) z p

[1,] 1.827 6.21 1.23 1.487 0.137

[2,] 0.706 2.03 1.21 0.585 0.558

exp(coef) exp(-coef) lower .95 upper .95

[1,] 6.21 0.161 0.559 69.0

[2,] 2.03 0.494 0.190 21.5

Likelihood ratio test= 2.73 on 2 df, p=0.256

Efficient score test = 2.73 on 2 df, p=0.256
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9.6 Piecewise Cox Model: (Collett, Chapter 10)

A time dependent covariate can be used to create a piecewise PH cox model.

Suppose we are interested in comparing two treatments, and:

• HR=θ1 during the interval (0, t1)

• HR=θ2 during the interval (t1, t2)

• HR=θ3 during the interval (t2,∞)

Define the following covariates:

• X - treatment indicator

(X = 0 → standard, X = 1 → new treatment)

• Z2 - indicator of change in HR during 2nd interval

Z2(t) =

{
1 if t ∈ (t1, t2) and X = 1

0 otherwise

• Z3 - indicator of change in HR during 3rd interval

Z3(t) =

{
1 if t ∈ (t2,∞) and X = 1

0 otherwise

The model for the hazard for individual i is:

λi(t) = λ0(t) exp{β1xi + β2z2i(t) + β3z3i(t)}



40 CHAPTER 9. TIME VARYING (OR TIME-DEPENDENT) COVARIATES



Contents

9 Time varying (or time-dependent) covariates 1

9.1 Examples to motivate time-dependent covariates . . 3

9.2 Extended Cox Model . . . . . . . . . . . . . . . . . . . . . . 9

9.3 Types of applications and Examples . . . . . . . . . . . . 12

9.4 Partial likelihood with time-varying covariates . . . . 17

9.5 Some cautionary notes . . . . . . . . . . . . . . . . . . . . . 31

9.6 Piecewise Cox Model: (Collett, Chapter 10) . . . . . . 39

41


