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1. INTRODUCTION

The mean residual life function (MRLF) is of interest in many fields such as reliability,

survival analysis, actuarial studies, etc. For example, it is sometimes more informative to

tell a prostate cancer patient how long he can survive or live without disease recurrence,

in expectation, given his current situation (which of course includes the fact that he has

“survived” or lived without the disease so far). As another example, a customer may be

interested in knowing how much longer his or her computer can be used, given that the

computer has worked normally for, say, t years. For a nonnegative survival time T with

finite expectation, the MRLF at time t ≥ 0 is

m(t) = E(T − t|T > t).

To assess the effects of covariates on the mean residual life, the proportional mean residual

life model by Oakes and Dasu (1990) may be used:

m(t|Z) = m0(t) exp(β′0Z), (1)

where m(t|Z) is the MRLF corresponding to the p-vector covariate Z, m0(t) is some unknown

baseline MRLF when Z = 0, and β0 is an unknown vector of regression parameters.

Previous work on the MRLF has focused on single-sample and two-sample cases (Oakes

and Dasu, 1990). For regression analysis, Maguluri and Zhang (1994) used the underlying

proportional hazards structure of the model to develop estimation procedures for β0 in model

(1), and Yuen, Zhu and Tang (2003) proposed a goodness-of-fit test for model (1), when

there was no censoring involved. In the presence of censoring, Chen and Cheng (2005) used

counting process theory to develop semiparametric inference procedures for β0 in model (1),

and Chen, et al. (2005) extended an estimation procedure of Maguluri and Zhang (1994) to

censored survival data using inverse probability of censoring weighting techniques (Robins

and Rotnitzky, 1992). Recently, Chen and Cheng (2006) and Chen (2007) proposed a new
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class of additive mean residual life model and discussed various estimation methodologies

with or without right censoring. However, other regression forms may be more natural or

descriptive in some applications.

In this paper, we consider a more general class of mean residual life regression models

given by

m(t|Z) = m0(t)g(β′0Z), (2)

where g(t) ≥ 0 is pre-specified and assumed to be continuous almost everywhere and twice

differentiable. Examples of possible link function include g(x) = 1 + x, g(x) = ex and

g(x) = log(1 + ex). Selection of an appropriate link function may be based on prior data or

the resulting interpretation of the regression parameters.

In the next section, we will first discuss the situation where the censoring time is in-

dependent of T and Z, and a general inference procedure based on estimating functions is

proposed. The procedure can be easily implemented numerically and the asymptotic proper-

ties of the proposed estimates of regression parameters are established. Section 3 generalizes

the methods to the situation where the censoring time may depend on Z through the pro-

portional hazards model. In Section 4, we develop test procedures for checking the adequacy

of model (2) under both independent and dependent censoring scenarios based on an appro-

priate stochastic process which is asymptotically Gaussian. Section 5 reports some results

from simulation studies conducted for evaluating the proposed methods. In Section 6, we

apply the methodology to a data set from a cancer clinic trial and some concluding remarks

are given in Section 7.

2. INFERENCE WITH INDEPENDENT CENSORING TIMES

In this section, let C be the potential censoring time, and assume that C is independent

of T and Z. To avoid lengthy technical discussion of the tail behaviour of the limiting



4

distributions, we further assume that Pr{C ≥ τ} > 0, where 0 < τ = inf{t : Pr(T ≥ t) =

0} < ∞. Let {Ti, Ci, Zi} (i = 1, ..., n) be independent replicates of {T, C, Z} and suppose

that we observe {Xi, δi, Zi; i = 1, ..., n}, where Xi = min(Ti, Ci), δi = I(Ti ≤ Ci). Here I(·)
is the indicator function. Define

Mi(t) = Ni(t)−
∫ t

0

Yi(u)dΛ(u|Zi), i = 1, ..., n, (3)

where Ni(t) = I(Xi ≤ t, δi = 1), Yi(t) = I(Xi ≥ t), and Λ(t|Zi) is the cumulative hazard

function of Ti given Zi. It is well known that Mi(t) (i = 1, ..., n) are zero-mean martingale

with respect to the σ-filtration σ{Ni(u), Yi(u+), Zi : 0 ≤ u ≤ t, i = 1, ..., n}.

Note that the survival function of T given Z is

S(t|Z) =
m(0|Z)

m(t|Z)
exp

{
−

∫ t

0

du

m(u|Z)

}
.

Then under model (2), we have

m0(t)dΛ(t|Zi) = g(β′0Zi)
−1dt + dm0(t). (4)

Thus, in view of (3) and (4), for given β, a reasonable estimator for m0(t) is the solution to

n∑
i=1

[
m0(t)dNi(t)− Yi(t)

{
g(β′Zi)

−1dt + dm0(t)
}]

= 0, 0 ≤ t ≤ τ. (5)

Denote this estimator by m̂a0(t; β). Straightforward algebra on (5) leads to

m̂a0(t; β) = Φn(t)−1

∫ τ

t

Φn(u)
∑n

i=1 Yi(u)g(β′Zi)
−1

∑n
i=1 Yi(u)

du, (6)

where Φn(t) = exp{− ∫ t

0

∑n
i=1 dNi(u)/

∑n
i=1 Yi(u)}, which is the Nelson-Aalen estimator of

the survival function for the pooled observations with independent censoring times. To

estimate β0, using the generalized estimating equation methods (Liang and Zeger, 1986; Cai

and Schaubel, 2004; Chen and Cheng, 2005), we propose the following class of estimating

equations for β0,

n∑
i=1

∫ τ

0

g(1)(β′Zi)

g(β′Zi)
Zi

[
m̂a0(t; β)dNi(t)− Yi(t)

{
g(β′Zi)

−1dt + dm̂a0(t; β)
}]

= 0,
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where g(1)(x) = dg(x)/dx. In view of (5), the above estimating equations are equivalent to

Ua(β) = n−1

n∑
i=1

∫ τ

0

{
h(β′Zi)Zi − Z̄a(t; β)

} [
m̂a0(t; β)dNi(t)− Yi(t)g(β′Zi)

−1dt
]

= 0, (7)

where h(x) = g(1)(x)/g(x), and

Z̄a(t; β) =

∑n
i=1 Yi(t)h(β′Zi)Zi∑n

i=1 Yi(t)
.

Let β̂a denote the solution to Ua(β) = 0 and m̂a0(t) ≡ m̂a0(t; β̂a) the corresponding estimator

of the unknown baseline mean residual life m0(t). Following the arguments of Chen and

Cheng (2005) and Lin, Wei and Ying (2001), we can check that both β̂a and m̂a0(t) always

exist and are unique and consistent. To study the asymptotic distribution of β̂a, we show

in Appendix A.1 that n1/2Ua(β0) is asymptotically normal with mean zero and covariance

matrix that can be consistently estimated by Σ̂a, where

Σ̂a = n−1

n∑
i=1

∫ τ

0

{
h(β̂′aZi)Zi − µ̂(t)

}⊗2
m̂a0(t)

2dNi(t),

µ̂(t) = Z̄a(t; β̂a) +
Φn(t)

πn(t)

∫ t

0

n−1

n∑
i=1

[
h(β̂′aZi)Zi − Z̄a(u; β̂a)

] dNi(u)

Φn(u)
,

and πn(t) = n−1
∑n

i=1 Yi(t). Here for a vector v, v⊗0 = 1, v⊗1 = v and v⊗2 = vv′. Then it

follows that n1/2(β̂a − β0) is asymptotically normal with zero mean and covariance matrix

that can be consistently estimated by Â−1Σ̂aÂ
−1, where

Â = n−1

n∑
i=1

∫ τ

0

{
h(β̂′aZi)Zi − Z̄a(t; β̂a)

}⊗2

Yi(t)g(β̂′aZi)
−1dt.

We also show in Appendix A.2 that n1/2{m̂a0(t)−m0(t)} (0 ≤ t ≤ τ) converges weakly

to a zero-mean Gaussian process whose covariance function at (s, t) can be estimated con-

sistently by Γ̂a(s, t) = n−1
∑n

i=1 ϕ̂i(s)ϕ̂i(t), where

ϕ̂i(t) = − 1

Φn(t)

∫ τ

t

Φn(u)

πn(u)

[
m̂a0(u)dNi(u)− Yi(u)

{
g(β̂′aZi)

−1du + dm̂a0(u)
}]

+m̂a0(t)Z̄a(t; β̂a)
′Â−1

∫ τ

0

{
h(β̂′aZi)Zi − µ̂(u)

}[
m̂a0(u)dNi(u)
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−Yi(u)
{
g(β̂′aZi)

−1du + dm̂a0(u)
}]

.

The asymptotic normality for m̂a0(t), together with the consistent variance estimator

Γ̂a(t, t), enables us to construct pointwise confidence intervals for m0(t). Since m0(t) is non-

negative, one may want to use the log transformation for the construction of its confidence

intervals. To construct simultaneous confidence bands for m0(t) over a time interval of in-

terest [t1, t2] (0 < t1 < t2 ≤ τ), we need to evaluate the distribution of the supremum of

a related process over [t1, t2]. It is not possible to evaluate such distributions analytically

because the limiting process of n1/2{m̂a0(t) − m0(t)} does not have an independent incre-

ments structure. To handle this problem, we use a resampling scheme to approximate the

distribution of n1/2{m̂a0(t)−m0(t)}. Define

Ŵa(t) = n−1/2

n∑
i=1

ϕ̂i(t)Ωi,

where (Ω1, ..., Ωn) are independent standard normal variables which are independent of the

data {Xi, δi, Zi; i = 1, ..., n}. According to the arguments of Lin et al. (2000), the distribution

of the process n1/2{m̂a0(t)−m0(t)} can be approximated by that of the zero-mean Gaussian

process Ŵa(t). To approximate the distributions of n1/2{m̂a0(t)−m0(t)}, we obtain a large

number of realizations from Ŵa(t) by repeatedly generating the normal random sample

(Ω1, ..., Ωn) while fixing the data {Xi, δi, Zi; i = 1, ..., n} at their observed values. Using this

simulation method, we may determine an approximate 1−α simultaneous confidence bands

for m0(t) over a time interval of interest [t1, t2].

3. INFERENCE WITH DEPENDENT CENSORING TIMES

Now we consider the situation where T , C and Z may depend on each other, but given

Z, we assume that T is independent of C. Also we assume that the hazard function of C

given Z has the form

λc(t | Z) = λ0(t) exp{γ′0Z}, (8)
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where λ0(t) is an unspecified baseline hazard function and γ0 is a vector of unknown regression

parameters. Note that the model from Section 2 is the model of Section 3 with γ0 = 0. Of

course, γ0 is usually unknown. A natural estimate of γ0, which is efficient under model (8),

is given by the maximum partial likelihood estimate defined as the solution to

Ur(γ) =
n∑

i=1

∫ τ

0

{Zi − Z̄r(t; γ)}dN c
i (t) = 0 (9)

(Cox, 1972), where N c
i (t) = I(Xi ≤ t, δi = 0), and Z̄r(t; γ) = S(1)(t; γ)/S(0)(t; γ), S(k)(t; γ) =

∑n
i=1 Yi(t)Z

⊗k
i exp{γ′Zi} for k = 0, 1, 2. Let γ̂ denote the estimator given by Ur(γ) = 0, and

Λ̂0(t) be the Breslow estimator of Λ0(t) =
∫ t

0
λ0(u)du, where

Λ̂0(t) =
n∑

i=1

∫ t

0

dN c
i (u)∑n

i=1 Yi(u) exp{γ̂′Zi} .

Consider a hypothetical equilibrium renewal process formed by renewals following the

same survival distribution as S(t|Z). The forward recurrence time V is defined as the time

from a fixed time to the next immediate renewal. Then under model (2), it follows from Cox

(1962) that its hazard function is

λv(t|Z) = m(t|Z)−1 = m0(t)
−1g(β′0Z)−1,

which is a proportional hazards model. When there is no censoring, the following partial

score equation can be used to estimate β0 (Prentice and Self, 1983; Cai and Schaubel, 2004),

Ê{h(β′Z)Z} −
∫ τ

0

Ê[h(β′Z)Zg(β′Z)−1I(V ≥ t)]

Ê[g(β′Z)−1I(V ≥ t)]
dF̂v(t) = 0, (10)

where Ê and F̂v(t) are their empirical estimates of the expectation E and Fv(t), respectively.

Here Fv(t) is the distribution function of V. However, this equality is only theoretical, since

we cannot observe V. To use the sample of T ’s in (10), following the arguments of Maguluri

and Zhang (1994) and Cheng et al. (2005), we have that for any function w(Z),

E{w(Z)I(V ≥ t)} = m0(0)−1E{w(Z)g(β′0Z)−1(T − t)+},
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where (T − t)+ denotes (T − t)I(T ≥ t). As a result,

dFv(t) =
E{g(β′0Z)−1I(T > t)}

E{g(β′0Z)−1T} dt.

Replacing the respective terms in (10), we obtain the following estimating equation for β

based on T ’s,

n−1

n∑
i=1

h(β′Zi)Zi −
∫ τ

0

∑n
i=1 h(β′Zi)Zig(β′Zi)

−2(Ti − t)+

∑n
i=1 g(β′Zi)−2(Ti − t)+

∑n
i=1 g(β′Zi)

−1I(Ti > t)∑n
i=1 g(β′Zi)−1Ti

dt = 0.

(11)

Let Gi(t; γ0, Λ0) be the censoring survival distribution of Ci given Zi under model (8),

that is, Gi(t; γ0, Λ0) = exp
{− Λ0(t) exp(γ′0Zi)

}
. Then for any well-defined function of ν,

E

{
ν(Xi, Zi, t)δi

Gi(Xi; γ0, Λ0)

}
= E

[
E

{
ν(Ti, Zi, t)δi

Gi(Ti; γ0, Λ0)

∣∣∣Zi

}]
= E{ν(Ti, Zi, t)}. (12)

In view of (11) and (12), using inverse probability of censoring weighting techniques (Robins

and Rotnitzky, 1992), we propose the following class of estimating equations for β0 when the

censoring time Ci may depend on Zi under model (8),

Ub(β) = n−1

n∑
i=1

δi

Gi(Xi; γ̂, Λ̂0)

{
h(β′Zi)Zi − Z̄i(β, γ̂, Λ̂0)

}
= 0, (13)

where

Z̄i(β, γ, Λ) =

∫ τ

0

h(β′Zi)Zig(β′Zi)
−2(Xi − t)+Ln(t; β, γ, Λ)dt,

Ln(t; β, γ, Λ) =
L1n(t; β, γ, Λ)

L2n(t; β, γ, Λ)L3n(t; β, γ, Λ)
,

and Lkn(t; β, γ, Λ) = n−1
∑n

i=1 Vki(t; β)Gi(Xi; γ, Λ)−1, k = 1, 2, 3. Here

V1i(t; β) = g(β′Zi)
−1I(Xi > t)δi, V2i(t; β) = g(β′Zi)

−2(Xi − t)+δi,

and V3i(t; β) = g(β′Zi)
−1Xiδi.

Let β̂b denote the solution to Ub(β) = 0. It can be shown in Appendix A.3 that β̂b is

consistent and unique in a neighborhood of β0. To study the asymptotic distribution of β̂b,
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we first show that n1/2Ub(β0) is asymptotically normal with zero mean and covariance matrix

that can be consistently estimated by Σ̂b, where

Σ̂b = n−1

n∑
i=1

[
ξ̂i +

∫ τ

0

Rn(t)

S(0)(t; γ̂)
dM̂ c

i (t) + BnD−1
n

∫ τ

0

{
Zi − Z̄r(t; γ̂)

}
dM̂ c

i (t)

]⊗2

, (14)

ξ̂i =
{

h(β̂′bZi)Zi − Z̄i(β̂b, γ̂, Λ̂0)
}

δiGi(Xi; γ̂, Λ̂0)
−1

−
∫ τ

0

Qn(t)

[
ξ̂1i(t)

L̂2n(t)L̂3n(t)
− L̂1n(t)ξ̂2i(t)

L̂2n(t)2L̂3n(t)
− L̂1n(t)ξ̂3i(t)

L̂2n(t)L̂3n(t)2

]
dt,

Rn(t) = n−1

n∑
i=1

{
h(β̂′bZi)Zi − Z̄i(β̂b, γ̂, Λ̂0)

}
exp{γ̂′Zi}δiGi(Xi; γ̂, Λ̂0)

−1Yi(t)

−
∫ τ

0

Qn(t)

[
R1n(t, u)

L̂2n(t)L̂3n(t)
− L̂1n(t)R2n(t, u)

L̂2n(t)2L̂3n(t)
− L̂1n(t)R3n(t, u)

L̂2n(t)L̂3n(t)2

]
du,

Bn = n−1

n∑
i=1

{
h(β̂′bZi)Zi − Z̄i(β̂b, γ̂, Λ̂0)

}
Λ̂0(Xi) exp{γ̂′Zi}Z ′

iδiGi(Xi; γ̂, Λ̂0)
−1

−n−1

n∑
i=1

∫ τ

0

{
h(β̂′bZi)Zi − Z̄i(β̂b, γ̂, Λ̂0)

}
exp{γ̂′Zi}δiGi(Xi; γ̂, Λ̂0)

−1

×Yi(t)Z̄r(t; γ̂)}′dΛ̂0(t)

−
∫ τ

0

Qn(t)

[
P1n(t)

L̂2n(t)L̂3n(t)
− L̂1n(t)P2n(t)

L̂2n(t)2L̂3n(t)
− L̂1n(t)P3n(t)

L̂2n(t)L̂3n(t)2

]
dt,

Qn(t) = n−1

n∑
i=1

h(β̂′bZi)Zig(β̂′bZi)
−2(Xi − t)+δiGi(Xi; γ̂, Λ̂0)

−1,

ξ̂ki(t) = Vki(t; β̂b)Gi(Xi; γ̂, Λ̂0)
−1 − L̂kn(t), k = 1, 2, 3,

Rkn(t, u) = n−1

n∑
i=1

Vki(t; β̂b)Gi(Xi; γ̂, Λ̂0)
−1 exp{γ̂′Zi}Yi(u),

Pkn(t) = n−1

n∑
i=1

Vki(t; β̂b)Gi(Xi; γ̂, Λ̂0)
−1Λ̂0(Xi) exp{γ̂′Zi}Z ′

i

−
∫ τ

0

Rkn(t, u)Z̄r(u; γ̂)′dΛ̂0(u),

M̂ c
i (t) = N c

i (t)−
∫ t

0

Yi(u) exp{γ̂′Zi}dΛ̂0(u),
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L̂kn(t) = Lkn(t; β̂b, γ̂, Λ̂0), and Dn = −∂Ur(γ̂)/∂γ′. Then it follows that n1/2(β̂b − β0) is

asymptotically normal with zero mean and covariance matrix that can be consistently esti-

mated by {
∂Ub(β̂b)

∂β′

}−1

Σ̂b

{
∂Ub(β̂b)

′

∂β

}−1

.

To estimate the baseline mean residual life m0(t), define

M∗
i (t) =

δiI(Xi > t)

G(Xi; γ0, Λ0)

[
(Xi − t)−m0(t)g(β′0Zi)

]
, i = 1, ..., n.

Under models (2) and (8), M∗
i (t) are zero-mean stochastic processes. Thus, for given β, a

reasonable estimator for m0(t) is the solution to

n∑
i=1

δiI(Xi > t)

Gi(Xi; γ̂, Λ̂0)

[
(Xi − t)−m0(t)g(β′Zi)

]
= 0, 0 ≤ t ≤ τ.

Denote this estimator by m̂b0(t; β), which can be expressed as

m̂b0(t; β) =

∑n
i=1(Xi − t)+δiGi(Xi; γ̂, Λ̂0)

−1

∑n
i=1 I(Xi > t)g(β′Zi)δiGi(Xi; γ̂, Λ̂0)−1

. (15)

Let m̂b0(t) ≡ m̂b0(t; β̂b) be the corresponding estimator of the unknown baseline mean resid-

ual life m0(t) under models (2) and (8). Following the arguments of Appendix A.2 and A.3,

we can check that m̂b0(t) is consistent, and that n1/2{m̂b0(t)−m0(t)} (0 ≤ t ≤ τ) converges

weakly to a zero-mean Gaussian process whose covariance function at (s, t) can be estimated

consistently by Γ̂b(s, t) = n−1
∑n

i=1 ψ̂i(s)ψ̂i(t), where

ψ̂i(t) = m̂b0(t)Z̄b(t; β̂b)
′
{

∂Ub(β̂b)

∂β′

}−1 [
ξ̂i + BnD−1

n

∫ τ

0

{Zi − Z̄r(u; β̂b)}dM̂ c
i (u)

+

∫ τ

0

Rn(u)

S(0)(u; γ̂)
dM̂ c

i (u)

]
+ Ψn(t; β̂b)

−1
[
M̂∗

i (t) +

∫ τ

0

rn(t, u)

S(0)(u; γ̂)
dM̂ c

i (u)

+B∗
n(t)D−1

n

∫ τ

0

{Zi − Z̄r(u; β̂b)}dM̂ c
i (u)

]
,

Z̄b(t; β) =

∑n
i=1 I(Xi > t)h(β′Zi)Zig(β′Zi)δiG(Xi; γ̂, Λ̂0)

−1

nΨn(t; β)
,
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Ψn(t; β) = n−1

n∑
i=1

I(Xi > t)g(β′Zi)δiGi(Xi; γ̂, Λ̂0)
−1,

M̂∗
i (t) = I(Xi > t)

[
(Xi − t)− m̂b0(t)g(β̂′bZi)

]
δiGi(Xi; γ̂, Λ̂0)

−1,

rn(t, u) = n−1

n∑
i=1

M̂∗
i (t) exp{γ̂′Zi}Yi(u),

B∗
n(t) = n−1

n∑
i=1

M̂∗
i (t)Λ̂0(Xi) exp{γ̂′Zi}Z ′

i −
∫ t

0

rn(t, u)Z̄r(u; γ̂)′dΛ̂0(u),

and ξ̂i, Bn, Rn(u) and Dn are defined in (14).

Note that the limiting process of n1/2{m̂b0(t) − m0(t)} is quite complicated, and its

properties are difficult to obtain analytically. As discussed in Section 2, we can show that

the distribution of the process n1/2{m̂b0(t) − m0(t)} can be approximated by that of the

zero-mean Gaussian process Ŵb(t), where

Ŵb(t) = n−1/2

n∑
i=1

ψ̂i(t)Ωi,

and (Ω1, ..., Ωn) are independent standard normal variables which are independent of the

data {Xi, δi, Zi; i = 1, ..., n}.

4. MODEL CHECKING TECHNIQUES

In this section, we develop testing procedures to check the adequacy of model (2) for both

independent and dependent cases. Beginning with the independent case where censoring

time C is independent of T and Z, let G(t) be the survival function of C, and Ĝ(t) be the

Kaplan-Meier estimate of G(t) based on {Xi, 1− δi, i = 1, ..., n}, where

Ĝ(t) =
∏
s≤t

{
1−

∑n
i=1 dN c

i (s)∑n
i=1 Yi(s)

}
.
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Define H1(t, z) = P{Xi ≤ t, Zi ≤ z, δi = 1}, and H(t, z) = P{Xi ≥ t, Zi ≤ z}, where the

notation “Zi ≤ z” means that each component of Zi is less than or equal to the corresponding

component of z. After some algebraic manipulation, model (2) leads to

m0(t) =
1

H(t, z)

∫ τ

t

∫ z

0

(s− t)G(t)

g(β′0w)G(s)
H1(ds, dw), (16)

where
∫ z

0
stands for

∫ z1

0
...

∫ zp

0
. Let us denote the right-hand side of (16) by V (t, z). Note

that the left-hand side is independent of the variable z. As a measure of fit for model (2),

we estimate V (t, z) by Vn(t, z) and obtain the process

θn(t, z) = n1/2{Vn(t, z)− Vn(t, zu)}, (17)

where zu is the vector of upper bounds for Z,

Vn(t, z) =
1

Hn(t, z)

{∫ τ

t

∫ z

0

(s− t)Ĝ(t)

g(β̂′aw)Ĝ(s)
H1n(ds, dw)

}
,

and Hn and H1n are the empirical counterparts of H and H1, respectively. That is, Hn(t, z) =

n−1
∑n

i=1 I(Xi ≥ t, Zi ≤ z) and H1n(t, z) = n−1
∑n

i=1 I(Xi ≤ t, Zi ≤ z, δi = 1). Under model

(2), the process θn(t, z) equals φn(t, z)−φn(t, zu), where φn(t, z) = n1/2{Vn(t, z)−V (t, z)} is

the standardized mean residual life process. Hence, based on (17), the Kolmogorov-Smirnov

(KS) type test statistic F (1)
n may be used to check the adequacy of model (2), where

F (1)
n = sup

t,z
|θn(t, z)|.

Under model (2), we show in Appendix A.4 that θn(t, z) converges to a zero-mean Gaus-

sian process W (t, z) whose covariance function at (t, z) and (t∗, z∗) can be estimated consis-

tently by σ̂(t, z; t∗, z∗) = n−1
∑n

i=1 η̂i(t, z)η̂i(t
∗, z∗), where η̂i(t, z) = ρ̂i(t, z)− ρ̂i(t, zu),

ρ̂i(t, z) =
Ĝ(t)

Hn(t, z)

∫ τ

t

[∫ τ

u

∫ z

0

s− t

Ĝ(s)g(β̂′aw)
H1n(ds, dw)

]
dM̃ c

i (u)

πn(u)

+
δi(Xi − t)Ĝ(t)

Hn(t, z)Ĝ(Xi)g(β̂′aZi)
I(Xi ≥ t, Zi ≤ z)− Vn(t, z)

Hn(t, z)
I(Xi ≥ t, Zi ≤ z)
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+
Ĝ(t)

Hn(t, z)

∫ τ

t

∫ z

0

(s− t)h(β̂′aw)w′

Ĝ(s)g(β̂′aw)
H1n(ds, dw)Â−1

∫ τ

0

{
h(β̂′aZi)Zi − µ̂(u)

}

×
[
m̂a0(u)dNi(u)− Yi(u)

{
g(β̂′aZi)

−1du + dm̂a0(u)
}]

, (18)

dm̂a0(u) =

∑n
j=1[m̂a0(u)dNj(u)− Yj(u)g(β̂′Zj)

−1du]∑n
j=1 Yj(u)

,

dM̃ c
i (u) = dN c

i (u)− Yi(u)dΛc
n(u),

and dΛc
n(u) = n−1

∑n
i=1 dN c

i (u)/πn(u). Consequently, Fn converges in distribution to F ,

where

F = sup
t,z
|W (t, z)|.

Obviously, the complicated structure of the covariance function (18) does not allow for

an analytic treatment of the involved distributions. As discussed in Sections 2 and 3, we

can show that the distribution of the process W (t, z) can be approximated by that of the

zero-mean Gaussian process W̃ (t, z), where

W̃ (t, z) = n−1/2

n∑
i=1

η̂i(t, z)Ωi,

and (Ω1, ..., Ωn) are independent standard normal variables which are independent of the

data {Xi, δi, Zi; i = 1, ..., n}. Thus, the distributions of F can be approximated by F̃ , where

F̃ = sup
t,z
|W̃ (t, z)|.

To approximate the distribution of F , we obtain a large number, say M , of realizations from

F̃ by repeatedly generating the normal random sample (Ω1, ..., Ωn) while fixing the data

{Xi, δi, Zi; i = 1, ..., n} at their observed values. Then using this simulation method, we may

determine an approximate critical value of the test. Specifically, the p-value of the test can

be obtained as follows,

p =
1

M

M∑

k=1

I(F̃k > Fn),

where F̃k (k = 1, ..., M) are M realizations from F̃ .
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For the dependent case where C depends on Z, an analogous procedure can be developed.

Let G(t|z) be the censoring survival distribution of C given Z = z, and

Ĝ(t|z) = exp
{− Λ̂0(t) exp(γ̂′z)

}
.

After some algebraic manipulation, model (2) leads to

m0(t) =
1

H(t, z)

∫ τ

t

∫ z

0

(s− t)G(t|w)

g(β′0w)G(s|w)
H1(ds, dw). (19)

Let us denote the right-hand side of (19) by V ∗(t, z). Note again that the left-hand side is

independent of the variable z, and V ∗(t, z) can be estimated by V ∗
n (t, z), where

V ∗
n (t, z) =

1

Hn(t, z)

{∫ τ

t

∫ z

0

(s− t)Ĝ(t|w)

g(β̂′bw)Ĝ(s|w)
H1n(ds, dw)

}
.

Similarly, for check the adequacy of model (2) under the dependent case, we use the Kolmogorov-

Smirnov type test statistic F (2)
n , where

F (2)
n = sup

t,z
|θ∗n(t, z)|,

and θ∗n(t, z) = n1/2{V ∗
n (t, z)− V ∗

n (t, zu)}.

Under model (2), we can also show that θ∗n(t, z) converges to a zero-mean Gaussian

process W ∗(t, z) whose covariance function at (t, z) and (t†, z†) can be estimated consistently

by σ̂∗(t, z; t†, z†) = n−1
∑n

i=1 η̂∗i (t, z)η̂∗i (t
†, z†), where η̂∗i (t, z) = ρ̂∗i (t, z)− ρ̂∗i (t, zu),

ρ̂∗i (t, z) =
1

Hn(t, z)

∫ τ

t

[∫ τ

u

∫ z

0

(s− t) exp{γ̂′w}Ĝ(t|w)

g(β̂′bw)Ĝ(s|w)
H1n(ds, dw)

]
dM̂ c

i (u)

S(0)(u; γ̂)

+
1

Hn(t, z)

∫ τ

t

∫ z

0

(s− t) exp{γ̂′w}Ĝ(t|w)

g(β̂′bw)Ĝ(s|w)

[∫ s

t

(w − Z̄r(v; β̂b)
′dΛ̂0(v)

]

×H1n(ds, dw)D−1
n

∫ τ

0

{
Zi − Z̄r(u; β̂b)

}
dM̂ c

i (u)

+
δi(Xi − t)Ĝ(t|Zi)

Hn(t, z)Ĝ(Xi|Zi)g(β̂′bZi)
I(Xi ≥ t, Zi ≤ z)− Vn(t, z)

Hn(t, z)
I(Xi ≥ t, Zi ≤ z)
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+
1

Hn(t, z)

∫ τ

t

∫ z

0

(s− t)h(β̂′bw)Ĝ(t|w)w′

Ĝ(s|w)g(β̂′bw)
H1n(ds, dw)

{
∂Ub(β̂b)

∂β′

}−1

×
[
ξ̂i +

∫ τ

0

Rn(u)

S(0)(u; γ̂)
dM̂ c

i (u) + BnD−1
n

∫ τ

0

{
Zi − Z̄r(u; β̂b)

}
dM̂ c

i (u)

]
. (20)

Consequently, F (2)
n converges in distribution to F∗ = supt,z |W ∗(t, z)|. As in the indepen-

dent case, we can show that the distribution of the process W ∗(t, z) can be approximated

by that of the zero-mean Gaussian process W̃ ∗(t, z) = n−1/2
∑n

i=1 η̂∗i (t, z)Ωi based on (20).

Thus, the distributions of F∗ can be approximated by F̃∗ = supt,z |W̃ ∗(t, z)|, and the p-value

of the test can be obtained in the same way as before.

5. SIMULATION STUDIES

We conducted simulation studies to assess the performance of the estimation procedure

proposed in Sections 2 and 3 with the focus on estimating β0. In the study, the survival

time T was generated from model (2) with β0 = 0 or 0.5, and the baseline mean residual

life function was taken to be m0(t) = −0.5t + 1, which corresponds to a rescaled beta

distribution (Oakes and Dasu, 1990). The covariate Z was assumed to be a Bernoulli random

variable with success probability 0.5. We considered three choices for the link function g(x):

g1(x) = 1 + x, g2(x) = ex and g3(x) = log(1 + ex). The censoring time C was generated

from the exponential distribution with hazard rate λ0e
γ0Z for γ0 = 0 or 1, and λ0 was chosen

to result in two censoring percentages of approximately 10% and 30%. Note that γ0 = 0

corresponds to independent censoring times, while γ0 = 1 gives dependent censoring times.

The results presented below are based on n = 100 or 200 with 2000 replications.

Table 1 shows the results for independent censoring (γ0 = 0). It can been seen that the

bias for estimating β0 is very small and the standard error of the estimator is very accurate

for all settings. The 95% empirical coverage probability based on normal approximation are
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reasonable, and the results become better when the sample size increases from 100 to 200.

Table 2 shows similar results for dependent censoring (γ0 = 1).

To investigate the asymptotical normality of the proposed estimates of β0 under both

independent and dependent censoring, we provide some QQ-plots in Figure 1, which sug-

gest reasonable normal approximations to the finite-sample distributions of the proposed

estimators. We also considered other models and set-ups and obtained similar results.

6. AN APPLICATION

We applied the proposed estimation procedures to a data set from a clinic trial on lung

cancer that has previous been analyzed by others (Lad et al., 1988, Piantadosi, 2005, and

Chen et al. 2005). The purpose of the trial is to assess the impact of systematic combination

chemotherapy on patients’ survival. Specifically, survival time of interest includes both time

to death and disease-free survival time. Between November 1979 and May 1985, 172 patients

were randomized to receive either postoperative radiotherapy (RT) alone or postoperative

RT plus chemotherapy with Cytoxan, Adriamycin, and Platinol (RT + CAP) for 6 months

and followed until death. The mean follow-up time is 1.5 years. Only 164 patients were

eligible for analysis, among which 86 patients were in RT and 78 in RT + CAP group.

In our analysis, we consider examining the effect of treatment and cell type (squamous

vs. nonsquamous/mixed) on patients’ disease-free survival. For treatment, we let Z1 = 1 if

the patient is in RT + CAP group and 0 otherwise. For cell type, we let Z2 = 1 if the patient

had the squamous cell type and 0 otherwise. We first fit model (8) containing both covariates

to the data to determine whether dependent or independent case should be considered. The

logrank test shows that the overall effect of treatment and cell type on the censoring time

is insignificant with a p-value of 0.876. The Kaplan-Meier estimates of survival functions of

the censoring time for four subgroups were plotted in Figure 2 (a). Thus, for the illustration
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purpose, we then fit model (2) to the data only under the independent censoring situation.

Table 3 shows that the estimation and test of hypothesis results for the effect of each of

the covariates by using three different functions for g. The results show that both treatment

and cell type have significant effect on the patients’ disease-free survival after adjusting the

effect of the other. More specifically, patients in RT + CAP group have significantly longer

mean residual disease-free life than those in the RT group, and patients having squamous

cell type have significantly longer mean residual disease-free life than those having nonsqua-

mous/mixed cell type. Figure 2 (b) and (c) show the difference in survival functions between

the treatment groups and two cell type groups, respectively. This is consistent with the re-

sults from Chen et al. (2005) under the proportional mean residual life model and from

Piantadosi (2005) under the proportional hazards model. Note that the three functions for

g yield similar results, and the result from g(x) = ex is the least conservative based on the

p-values.

We also checked the adequacy of model (2) with both covariate under the three functions

of g(x). Based on 500 realizations of F̃ , the KS-type test statistics with p-values in paren-

theses, are 4288.81 (0.966), 4554.43 (0.946) and 6341.43 (0.958) for g(x) to be 1 + x, ex and

log(1 + ex), respectively. These results indicate that model (2) fits the data adequately.

7. CONCLUDING REMARKS

In this article we have studied a class of mean residual life regression models under both

independent and dependent censoring. The proposed models are generalization of the pro-

portional mean residual life model with more choices of the link function g(x). Estimation

procedures were proposed for the model parameters, and asymptotic properties of the esti-

mators were derived. The methodology was applied to a cancer data set from a clinic trial,

and the simulation results show that the proposed methods work well for the situations



18

considered.

As it is well-known, model checking is always an important issue in regression analysis,

because most regression models have limitations. We proposed a goodness of fit test for

model (2) based on the KS type test statistics. In addition, the Cramér-von Mises type test

statistics can also be used to check the adequacy of model (2):

F (3)
n =

∫ ∫
θn(t, z)2H0

n(dt, dz),

which converges in distribution to

F (3) =

∫ ∫
W (t, z)2H0(dt, dz),

where H0 and H0
n are the distribution function and empirical distribution function of (Xi, Zi),

respectively. Similar to the KS-type test statistics, F̃ (3) =
∫ ∫

W̃ (t, z)2H0
n(dt, dz) can be used

to approximate the distribution of F (3).

For dependent censoring, the proportional hazards model was used as the working model

for the censoring time. Of course, we can also choose some other semiparametric regression

models as the working model for censoring. For example, we may use the proportional mean

residual life model or the additive mean residual life model, then we can obtain the estimators

of the censoring model parameters using the approach of Chen and Cheng (2005) or Chen

and Cheng (2006). Thus, the estimator of the censoring survival distribution G(t|z) can be

obtained using the following inversion formula

G(t|z) =
mG(0|z)

mG(t|z)
exp

{
−

∫ t

0

mG(u|z)−1du
}

,

where mG(t|z) = E(C − t|z, C > t) is the MRLF of C at t given z. Thus, the unknown

parameter in model (2) can be estimated by using the procedure in Section 3.

Since estimating functions (7) and (13) were given in a somewhat ad hoc fashion using

the generalized estimating equation methods, it would be worthwhile to further investigate
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the efficiencies of the proposed estimators. In principle, it might be possible to estimate

β0 and m0(·) more efficiently by the nonparametric maximum likelihood approach, and the

resulting inference procedure would be much more complicated. Another issue is that the

estimates of m0(t) may be not monotonic, and there is no guarantee that the finite-sample

estimator m̂a0(t) + t or m̂b0(t) + t would maintain the necessary monotonicity at some time

point. The incorporation of the pooled-adjacent-violators algorithm may help solving the

problem as mentioned in Chen and Cheng (2005).
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APPENDIX: PROOFS OF ASYMPTOTIC PROPERTIES

Using the uniform strong law of large numbers (Pollard, 1990, p.41), we have z̄a(t) =

limn→ Z̄a(t; β0), and s(k)(t; γ) = limn→∞ S(k)(t; γ) (k = 0, 1) uniformly in t ∈ [0, τ ]. Let

z̄r(t) = s(1)(t; γ0)/s
(0)(t; γ0). In addition, assume that A defined below in (A.4) is nonsingular

matrix.

A.1. ASYMPTOTIC NORMALITY OF Ua(β0) AND β̂a

Note that

n∑
i=1

[
m0(t)dNi(t)− Yi(t)

{
g(β′0Zi)

−1dt + dm0(t)
}]

= m0(t)
n∑

i=1

dMi(t),
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and
n∑

i=1

[
m̂a0(t; β0)dNi(t)− Yi(t)

{
g(β′0Zi)

−1dt + dm̂a0(t; β0)
}]

= 0.

Then it follows that

{m̂a0(t; β0)−m0(t)}
n∑

i=1

dNi(t)− nπnd{m̂a0(t; β0)−m0(t)} = −m0(t)
n∑

i=1

dMi(t),

which is a first-order linear ordinary differential equation in m̂a0(t; β0) −m0(t). It thus has

the closed-form solution given by

m̂a0(t; β0)−m0(t) = −Φn(t)−1

n∑
i=1

∫ τ

t

Φn(u)m0(u)

nπn(u)
dMi(u). (A.1)

Write

Ua(β0) = n−1

n∑
i=1

∫ τ

0

{
h(β′0Zi)Zi − Z̄a(t; β0)

}
m0(t)dMi(t)

+n−1

n∑
i=1

∫ τ

0

{
h(β′0Zi)Zi − Z̄a(t; β0)

} [
m̂a0(t; β0)−m0(t)

]
dNi(t).

Using the uniform strong law of large numbers and (A.1), the second term in the right-hand

side of the above equation is equivalent to

−n−1

n∑
i=1

∫ τ

0

µ∗(t)m0(t)dMi(t) + op(n
−1/2),

where

µ∗(t) =
S(t)

π(t)

∫ t

0

1

S(u)
E

[
{h(β′Zi)Zi − z̄a(u)}dNi(u)

]
,

π(t) = EY1(t), and S(t) is the marginal survival function of T. Therefore,

n1/2Ua(β0) = n−1/2

n∑
i=1

∫ τ

0

{h(β′0Zi)Zi − µ(t)}m0(t)dMi(t) + op(1),

where µ(t) = z̄a(t) + µ∗(t). As a result, n1/2Ua(β0) converges in distribution to zero-mean

normal distribution with covariance matrix Σa, where

Σa = E

[∫ τ

0

{
h(β′0Zi)Zi − µ(t)

}⊗2

m0(t)
2dNi(t)

]
, (A.2)



21

which can be consistently estimated by Σ̂a defined in Section 2.

Since the censoring time C is independent of T and Z, and
∫ τ

t

S(u|Z)g(β′0Z)−1du = m0(t)S(t|Z),

under model (2), it follows from the uniform strong law of large numbers that

∂m̂a0(t; β0)

∂β
= −Φn(t)−1

∫ τ

t

Φn(u)

πn(u)

[
n−1

n∑
i=1

Yi(u)h(β′0Zi)g(β′0Zi)
−1Zidu

]

= − 1

S(t)
E

[
h(β′0Zi)Zi

∫ τ

t

S(u|Zi)g(β′0Zi)
−1du

]
+ op(1)

= −m0(t)z̄a(t) + op(1). (A.3)

Let Â = n−1∂U(β0)/∂β′, and h(1)(x) = dh(x)/dx. Then it follows from (A.3) that

Â = n−1

n∑
i=1

∫ τ

0

{
h(1)(β′0Zi)Z

⊗2
i −

∑n
i=1 Yi(t)h

(1)(β′0Zi)Z
⊗2
i∑n

i=1 Yi(t)

}

× [
m̂a0(t; β0)dNi(t)− Yi(t)g(β′0Zi)

−1dt
]

+n−1

n∑
i=1

∫ τ

0

{
h(β′0Zi)Zi − Z̄a(t; β0)

}[
∂m̂a0(t; β0)

∂β′
dNi(t) + Yi(t)h(β′0Zi)Z

′
ig(β′0Zi)

−1dt

]

= n−1

n∑
i=1

∫ τ

0

{
h(1)(β′0Zi)Z

⊗2
i −

∑n
i=1 Yi(t)h

(1)(β′0Zi)Z
⊗2
i∑n

i=1 Yi(t)

} [
m0(t)dMi(t) + Yi(t)dm0(t)

]

−n−1

n∑
i=1

∫ τ

0

{
h(β′0Zi)Zi − Z̄a(t; β0)

} [
za(t)

′
{

m0(t)dMi(t) + Yi(t)g(β′0Zi)
−1dt

+Yi(t)dm0(t)
}
− Yi(t)h(β′0Zi)Z

′
ig(β′0Zi)

−1dt

]
+ op(1)

= A + op(1),

where

A = E

[∫ τ

0

{h(β′0Zi)Zi − z̄a(t)}⊗2Yi(t)g(β′0Zi)
−1dt

]
. (A.4)

Thus, the asymptotic distribution of β̂a follows from a Taylor series expansion of Ua(β̂a) at

β0. For future reference, we display the asymptotic approximation

n1/2(β̂a − β0) = −A−1n−1/2

n∑
i=1

∫ τ

0

{h(β′0Zi)Zi − µ(t)}m0(t)dMi(t) + op(1). (A.5).
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A.2. WEAK CONVERGENCE OF m̂a0(t)

To show the weak convergence of n1/2{m̂a0(t)−m0(t)}, we first note that

n1/2{m̂a0(t)−m0(t)} = n1/2{m̂a0(t; β0)−m0(t)}+ n1/2{m̂a0(t; β̂a)− m̂0(t; β0)}.

It follows from (A.1) and the uniform strong law of large numbers that

n1/2{m̂a0(t; β0)−m0(t)} = −S(t)−1n−1/2

n∑
i=1

∫ τ

t

S(u)m0(u)

π(u)
dMi(u) + op(1).

Using the Taylor expansion of m̂a0(t; β̂a) together with (A.3), we have

n1/2{m̂a0(t; β̂a)− m̂a0(t; β0)} = −m0(t)z̄a(t)
′n1/2{β̂a − β0}+ op(1).

Thus, it follows from (A.5) that

n1/2{m̂a0(t)−m0(t)} = n−/2

n∑
i=1

ϕi(t) + op(1),

where

ϕi(t) = −S(t)−1

∫ τ

t

S(u)m0(u)

π(u)
dMi(u)+m0(t)z̄a(t)

′A−1

∫ τ

0

{h(β′0Zi)Zi − µ(u)}m0(u)dMi(u).

Because ϕi (i = 1, ..., n) are independent zero-mean random variables for each t, the mul-

tivariate central limit theorem implies that n1/2{m̂a0(t) − m0(t)} (0 ≤ t ≤ τ) converges

in finite-dimensional distributions to zero-mean Gaussian process. Using the modern em-

pirical theory as Lin et al. (2000) and Lin, Wei and Ying (2001), we can show that

n1/2{m̂a0(t) − m0(t)} is tight and converges weakly to zero-mean Gaussian process with

covariance function Γa(s, t) = E{ϕi(s)ϕi(t)} at (s, t), which can be estimated by Γ̂a(s, t)

given in Section 2.
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A.3. ASYMPTOTIC NORMALITY OF Ub(β0) AND β̂b

It can be checked that

Ub(β0) = n−1

n∑
i=1

{
h(β′0Zi)Zi − Z̃i

}
δiG(Xi; γ0, Λ0)

−1

+n−1

n∑
i=1

{
h(β′0Zi)Zi − Z̃i

}
δi

[
Ĝi(Xi; γ̂, Λ̂0)

−1 −G(Xi; γ0, Λ0)
−1

]

−
∫ τ

0

Q(t)
{

Ln(t; β0, γ̂, Λ̂0)− L(t)
}

dt + op(n
−1/2), (A.6)

where Q(t) = limn→∞ Qn(t), L(t) = L1(t)/(L2(t)L3(t)), Lk(t) = limn→∞ Lkn(t; β0, γ0, Λ0)

(k = 1, 2, 3), and

Z̃i =

∫ τ

0

h(β′0Zi)Zig(β′0Zi)
−2(Xi − t)+L(t)dt.

It is well known that (Fleming and Harrington, 1991, p.299)

Λ̂0(t)− Λ0(t) = n−1

n∑
i=1

∫ t

0

dM c
i (u)

s(0)(u; γ0)
−

∫ t

0

z̄r(u)′dΛ0(u)(γ̂ − γ0) + op(n
−1/2),

γ̂ − γ0 = D−1n−1

n∑
i=1

∫ τ

0

{
Zi − z̄r(u)

}
dM c

i (u) + op(n
−1/2),

M c
i (t) = N c

i (t)−
∫ t

0

Yi(u) exp{γ′0Zi}dΛ0(u),

and D = limn→∞ Dn. Thus,

Lkn(t; β0, γ̂, Λ̂0)−Lkn(t; β0, γ0, Λ0) = n−1

n∑
i=1

∫ τ

0

Rk(t, u)

s(0)(u)
dM c

i (u)+Pk(t)(γ̂−γ0)+ op(n
−1/2),

and

Lkn(t; β0, γ0, Λ0)− Lk(t) = n−1

n∑
i=1

ξki(t) + op(n
−1/2),

where ξki(t) = Vki(t; β0)Gi(t; γ0, Λ0)
−1 − Lk(t), and Rk(t, u) and Pk(t) are the limits of

Rkn(t, u) and Pkn(t), respectively. Therefore, using the functional Delta-method, it follows

from (A.6) that

n1/2Ub(β0) = n−1/2

n∑
i=1

[
ξi +

∫ τ

0

R(t)

S(0)(t; γ̂)
dM c

i (t) + BD−1

∫ τ

0

{
Zi − z̄r(t)

}
dM c

i (t)

]
+ op(1),
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where

ξi =
δi

{
h(β′0Zi)Zi − Z̃i

}

Gi(Xi; γ0, Λ0)
−

∫ τ

0

Q(t)

[
ξ1i(t)

L2(t)L̂3(t)
− L1(t)ξ2i(t)

L2(t)2L3(t)
− L1(t)ξ3i(t)

L2(t)L3(t)2

]
dt,

and R(t) and B are the limits of Rn(t) and Bn given in (14), respectively. Utilizing the

multivariate central limit theorem, n1/2Ub(β0) is asymptotically normal with mean zero and

covariance matrix Σb, where

Σb = E

[
ξi +

∫ τ

0

R(t)

S(0)(t; γ̂)
dM c

i (t) + BD−1

∫ τ

0

{
Zi − z̄r(t)

}
dM c

i (t)

]⊗2

.

An empirical covariance estimator Σ̂b defined by (14), in which all unknown quantities are

replaced with their observed counterparts, converges in probability to Σb.

It can be checked that Ub(β) converges almost surely uniformly in a closed set of β to

ub(β), and ub(β0) = 0, where

ub(β) = E{h(β′Z)Z} −
∫ τ

0

E{h(β′Z)Zg(β′Z)−2(T − t)+}
E{g(β′Z)−2(T − t)+}

E{g(β′Z)−1I(T > t)}
E{g(β′Z)−1T} dt.

For any function w(Z), define

Et,β0{w(Z)} =
E{w(Z)g(β′0Z)−2(T − t)+}

E{g(β′0Z)−2(T − t)+} ,

and

Eβ0{w(Z)} =
E{w(Z)g(β′0Z)−1T}

E{g(β′0Z)−1T} .

Then

∂ub(β0)

∂β′
= 2

∫ τ

0

Vart,β0{h(β′0Z)Z}Eβ0{S(t|Z)m(0|Z)−1}

− 1

m0(0)

∫ τ

0

Covβ0{h(β′0Z)Z, S(t|Z)} Covt,β0{h(β′0Z)Z, g(β′0Z)−1}dt.

We observe that S(t|Z) is decreasing function of g(β′0Z)−1, which implies that {h(β′0Z), S(t|Z)}
and covt,β0{h(β′0Z)Z, g(β′0Z)−1} must take opposite signs (Maguluri and Zhang, 1994). This

gives that ∂ub(β0)/∂β′ is positive definite. Thus, it follows that β̂b is consistent and unique
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in a neighborhood of β0. A Taylor series expansion of Ub(β̂b) yields that n1/2(β̂b − β0) is

asymptotically normal with mean zero and covariance matrix given by

{
∂ub(β0)

∂β′

}−1

Σb

{
∂ub(β0)

′

∂β

}−1

.

A.4. WEAK CONVERGENCE OF θn(t, z)

It can be checked that

φn(t, z) =
n1/2{Bn(t, z)−B(t, z)}

H(t, z)
− B(t, z)

H(t, z)2
n1/2{Hn(t, z)−H(t, z)}+ op(1), (A.7)

where

Bn(t, z) =

∫ τ

t

∫ z

0

(s− t)Ĝ(t)

g(β̂′aw)Ĝ(s)
H1n(ds, dw),

and

B(t, z) =

∫ τ

t

∫ z

0

(s− t)G(t)

g(β′0w)G(s)
H1(ds, dw).

Consider the martingale representation of the Kaplan-Meier estimator (Fleming and Har-

rington, 1991, p.97)

Ĝ(t)−G(t)

G(t)
= −

∫ t

0

Ĝ(u−)

G(u)

∑n
i=1 M c

i (u)

nπn(u)
, (A.8)

where M c
i (t) = N c

i (t)−
∫ t

0
I(Xi ≥ u)dΛc(u) and Λc(t) = − log(G(t)) is the cumulative hazard

function of the censoring times. It is well known that M c
i (t) (i = 1, ..., n) are martingales

with respect to the σ-filtration

σ{I(Xi ≥ u), I(Xi ≤ u, δi = 0), Zi : 0 ≤ u ≤ t, i = 1, ..., n}.

It follows from (A.8) and a Taylor series expansion that

Bn(t, z)−B(t, z) = n−1

∫ τ

t

∫ z

0

(s− t)G(t)

g(β′0w)G(s)

(∫ s

t

dM c
i (u)

π(u)

)
H1(ds, dw)

+

∫ τ

t

∫ z

0

(s− t)G(t)

g(β′0w)G(s)
[H1n(ds, dw)−H1(ds, dw)]
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−
∫ τ

t

∫ z

0

(s− t)h(β′0w)w′G(t)

g(β′0w)G(s)
H1(ds, dw)(β̂a − β0) + op(1). (A.9)

Thus, combining (A.5), (A.7) and (A.9), we have

θn(t, z) = φn(t, z)− φn(t, zu) = n−1/2

n∑
i=1

ηi(t, z) + op(1),

where ηi(t, z) = ρi(t, z)− ρi(t, zu), and

ρi(t, z) =
G(t)

H(t, z)

∫ τ

t

[∫ τ

u

∫ z

0

s− t

G(s)g(β′0w)
H1(ds, dw)

]
dM c

i (u)

π(u)

+
δi(Xi − t)G(t)

H(t, z)G(Xi)g(β′0Zi)
I(Xi ≥ t, Zi ≤ z)− V (t, z)

H(t, z)
I(Xi ≥ t, Zi ≤ z)

+
G(t)

H(t, z)

∫ τ

t

∫ z

0

(s− t)h(β′0w)w′

g(β′0w)G(s)
H1(ds, dw)

×A−1

∫ τ

0

{h(β′0Zi)Zi − µ(u)}m0(u)dMi(u).

Thus, by the same arguments as those of Appendix A.5 in Lin et al. (2000), θn(t, z)

converges weakly to zero-mean Gaussian process with covariance function σ(t, z; t∗, z∗) =

E{ηi(t, z)ηi(t
∗, z∗)} at (t, z) and (t∗, z∗), which can be consistently estimated by σ̂(t, z; t∗, z∗)

given in Section 4.
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Table 3: Estimation of the effects for the lung cancer data

Covariates g(x) Parameter estimate SEE p-value

1 + x 1.2249 0.6130 0.0457
Treatment (Z1) ex 0.7334 0.2413 0.0024

log(1 + ex) 1.2487 0.5164 0.0156

1 + x 1.0596 0.6338 0.0946
Cell type (Z2) ex 0.6528 0.2590 0.0117

log(1 + ex) 1.1035 0.5462 0.0434

Note: SEE is the standard error estimate; p-value pertains to testing no covariate effect.
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Figure 2: Kaplan-Meier Estimates of Survival Functions


