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SUMMARY 

Standard convex optimization techniques are applied to the analysis of interval censored data. 
These methods provide easily verifiable conditions for the self-consistent estimator proposed by 
Turnbull (1976) to be a maximum likelihood estimator and for checking whether the maximum 
likelihood estimate is unique. A sufficient condition is given for the almost sure convergence of the 
maximum likelihood estimator to the true underlying distribution function. 

Some key words: Convergence; Self-consistency algorithm; Uniqueness. 

1. INTRODUCTION 

Three data-collection schemes have been referred to as interval censored. Following Peto (1973) 
we use this term only to refer to the following situation. For each individual i there is a sequence 
of inspection times ti,,, ti,,, . . . . The exact failure time xi of the individual is not observed. All that 
is known is which inspection times immediately preceded and followed the failure, that is the j 
such that ti,j-, < x i  < tiVj. Such data have been considered by Peto (1973), Turnbull (1976) and 
Finkelstein (1986), among others. A generalization of this situation has been considered by 
De Gruttola & Lagakos (1989), but they refer to it as doubly-censored data. Interval censored 
data, as we have defined it, differs substantially from grouped data (Heitjan, 1989) and the doubly- 
censored data of Chang & Yang (1987). 

2. ESTIMATION 

2.1. The likelihood 
Suppose that survival times, X, arise from a distribution F,, that each individual has a possibly 

infinite sequence of inspection times arising from some stochastic process Q, and that the inspection 
times and failure times are independent. This ensures that the censoring is noninformative. Also 
suppose that no time point occurs with positive probability under the inspection time process. This 
assumption is made to ensure that failures cannot coincide with inspection times. The observed 
data consist of the last inspection time prior to failure and the first inspection time after failure for 
each individual; i.e. the data are {I,);,,, where Ii= (Li, Ri) is the open interval known to contain 
the unobserved failure time. 

These assumptions ensure that the probabilities of inspection times do not involve any of 
the parameters of interest and hence we may consider the likelihood conditional upon the 
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observed intervals, 
n 


L =  n {Fo(Ri-1 -Fo(Li)). 
i = l  

Let {sj)j"=, denote the unique ordered elements of {0, {L,);, {R,);, }. Then, as noted by Peto 
(1973), Turnbull (1976) and Finkelstein (1986), the likelihood depends on Fo only through the 
values {FO(sj)}j"=, and not on how F changes between sj. Let aij be the indicator of the event 
(sj-,, sj) c Iiand pj = Fo(sj-) -Fo(sj-,); then the likelihood can be written 

and the log likelihood as 

Also let 

where qi = aijpj, with the summation over j = 1, .  . . ,m. The terms qi correspond to the sum of 
probabilities associated with the ith individual and hence d, is the sum of l/qi for all individuals 
whose intervals, I i ,  intersect the interval (s,-,, s,). 

2.2. The Kuhn-Tucker conditions 
To find the maximum likelihood estimate of the vector p we maximize l(p) with respect to p 

subject to the constraints 

p j 2 0  ( j = l ,  . . . ,m). (2) 

For a concave programming problem with linear constraints, the Kuhn-Tucker conditions are 
necessary and sufficient for optimality (Rockafellar, 1970, Theorem 28.1, Corollary 28.2.2). A point 
8 is a maximum likelihood estimate if and only if there exist Lagrange multipliers pj  ( j  =0, . . . ,m) 
such that the Kuhn-Tucker conditions (1)-(5) hold, with 

pjpj =0 ( j= 1, .  . . ,m), (3) 

pj>O ( j = l ,  . . . ,m), (4) 

Multiplying (5) by pj and summing yields 

aijpjp o = C j d j p j = C i , j - = C i - = n  rli 

rli rli 

since pjpj = 0 by (3). If pj >0 then (3) implies that pj =0, and (5) then implies that dj =p0 =n. 
Conversely, if pj =0 then (5) implies that pj 2 0 so dj =p0 -pj implies dj <n. At a solution all of 
the qi are strictly positive, since otherwise the d, would not be finite. 

For any p that satisfies the constraints (1) and (2), if pj =0 set pj  = n -dj, and if pj > 0 set 
pj  =0. Then condition (3) is always satisfied. We call the pj Lagrange multipliers whether or not 



they satisfy (4). The left-hand side of ( 5 ) ,  dj +pj -yo, is called the reduced gradient, because it is 
the gradient with respect to the free variables. The Kuhn-Tucker conditions are satisfied if the 
Lagrange multipliers are nonnegative and the reduced gradient is zero. 

Peto (1973) and Turnbull (1976) point out that pj can be nonzero only if sj-, is a left endpoint 
Li for some individual i and sj is a right endpoint R, for some possibly different individual k. 
However, some of the pi satisfying this criterion may also be zero. 

2.3. Uniqueness of the maximum likelihood estimate 
The maximum likelihood estimate need not be unique. Turnbull (1976) gives the example with 

aij= a, for all i. The maximum likelihood estimate will be unique if the log likelihood is strictly 
concave, that is the Hessian H is strictly negative definite. Let A denote the n x m matrix with 
elements aij, then H =A'DA, where D is the diagonal matrix with elements - l/q?. Hence, H will 
be of full rank and the maximum likelihood estimate will be unique if rank (A) = m. 

There may be situations in which the likelihood is concave, but not strictly concave, and the 
maximum likelihood estimate is unique nevertheless. Theorem 9.3.2 of Fletcher (1987), specialized 
to our problem, states the following. Let j3 be a solution to the Kuhn-Tucker equations with 
suitable Lagrange multipliers p. Define 

Then the maximum likelihood estimate j3 is unique if, whenever w E W and w +0, 

We can get a condition much easier to verify if we drop some of the constraints and verify the 
condition (6) with the set W replaced by 

Since we check a larger set, this condition implies the other and is sufficient. 
This can be further simplified by letting A =(A, A,) be a partition of A, where A, consists of 

those columns j such that pj >0. Also partition vectors w = (w, w,) in the same way. The sufficient 
condition involving W' can then be stated as 

where one direction of the inequality comes from (6) and the other from concavity. Since D is 
negative definite, this occurs if and only if A,w, +0, which proves the following. 

THEOREM1. A sufJicient condition for uniqueness of the maximum likelihood estimate is that the 
matrix A, consisting of the columns of A corresponding to j such that pj =0 has rank equal to its 
number of columns. 

3. CONSISTENCY 
Maximum likelihood estimation for interval censored data is strongly consistent. The maximum 

likelihood estimator converges almost surely to the truth in a topology to be described presently. 
For simplicity we assume that F,(O) =0, and that all of the inspection times are greater than zero. 
We also assume that with probability one there are only a finite number of inspection times 
in any finite interval so that each realization of the inspection time process can be written 
t = (to, t,, . . . , tm(,)), where 

and m(t) is either finite or co.The assumption that all times are positive serves merely to avoid 
doubly infinite sequences. 
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The log-likelihood for our problem is then 

Note that in the inner summation exactly one of the indicators is nonzero so this summation is 
simply another notation for log {F(R -) -F(L)}. A proof of consistency requires a suitable com- 
pactification of the parameter space, which we take to be the set a of all subdistribution functions 
with the topology of vague convergence which is compact by Helley's selection theorem. The 
expectation of the log likelihood ratio, A(F) = E{l(F)- l(Fo)), is an upper semicontinuous, nonnega- 
tive concave function by Fatou's lemma, Jensen's inequality, and the assumption that no inspection 
time occurs with positive probability. So the set C = {F:A(F)= 0) is a closed subset of 8.The 
distribution functions in C cannot be distinguished by maximum likelihood. Hence, following 
Redner (1981), we identify all of the points in C with Fo. 

Then we have the following theorem. 

THEOREM2. Under the assumptions stated above, the maximum likelihood estimate (fin} converges 
strongly to the equivalence class C of the true distribution in the topology of vague convergence. 

This says that the sequence {fin} is eventually in every neighbourhood of C. The proof of the 
theorem follows Wang (1975), and is available from the authors. 

The equivalence class C is the set of all distribution functions F such that F(tj) = Fo(tj) for 
j = 0, . . . ,m(t) and almost all inspection time sequences t = (to, t l ,  . . . ,tm(,)). If the inspection 
time process densely samples [0, a),the equivalence class C will contain only Fo. 

The method proposed by Turnbull (1976), a version of the EM algorithm, is easy to implement 
but is known to have slow convergence. Alternative methods are the constrained Newton-Raphson 
method of Peto (1973) and the similar active set methods of optimization theory (Fletcher, 1987, 
5 11.2). The latter are more difficult to implement but have quadratic convergence. 

Another problem with Turnbull's algorithm is that there can be self-consistency points other 
than the maximum likelihood estimate. These are not stationary points of the log-likelihood. They 
are maxima relative to faces of the parameter space, but moving away from such points into the 
interior increases the likelihood. An example of this is where F(t)  puts mass only on the interval 
(0,3]. Suppose that the data are the intervals (0, 11, (1,3], (1, 31, (0,2], (0,2], (2, 31. Then it can 
be verified that p(0, 11 =4, p( l ,2]  =0, p(2, 31 =4 is a self-consistent estimator while p(0, I ]  =3, 
p(l ,2]  =3, p(2,3] =3 is the maximum likelihood estimate. An examination of the Kuhn-Tucker 
conditions at ($, 0, i )  shows that they are violated at this point. 

The occurrence of self-consistency points other than the maximum likelihood estimate is troub- 
ling for two reasons. First, continuity of the EM steps implies that the algorithm makes arbitrarily 
small steps near a self-consistency point so it is not possible to test for convergence by examining 
either the sequence of iterates or the likelihood along the sequence. Secondly, as will be illustrated 
in the next section, it is a reasonable procedure to restart the EM algorithm with very small 
parameter values set to zero to 'polish' the parameter values. This will produce incorrect results if 
the zeros are incorrectly determined, since the EM iteration never changes the zeros. 

Both of these problems can be cured by the simple expedient of examining the Kuhn-Tucker 
conditions. If they are used as the convergence test, convergence to the maximum likelihood 
estimate is guaranteed. The computational effort required to check the Kuhn-Tucker conditions 
is minimal. All of the necessary quantities are calculated during the self-consistency iteration. 
Interestingly, Turnbull does derive a characterization of the maximum likelihood estimate equi- 
valent to the Kuhn-Tucker conditions, but he does not recommend that it be used to test for 
convergence of the self-consistency algorithm. 



5.  EXAMPLE 

The data in Table 1come from Finkelstein & Wolfe (1985). It gives the interval in which cosmetic 

deterioration for early breast cancer patients treated with radiotherapy occurred in 46 individuals. 
The Kuhn-Tucker conditions indicate that there are only 14 intervals that need be considered; 
these intervals and the pj  associated with them are reported in the first three columns of Table 2. 
The matrix (ai j )is of full rank; hence the maximum likelihood estimate is unique. 

Table 1. Intervals in which deterioration occurred 

Table 2. Restricted set of intervals and the associated probabilities 

Reduced Lagrange Reduced Lagrange 
Left Right Probability Probability gradient multiplier Probability gradient multiplier 

The first two columns give the intervals on which F ( t )  may have positive mass. The third column contains 
the maximum likelihood estimate of the masses; six were constrained to zero and the resulting estimate 
reported in the fourth column. The corresponding reduced gradient and Lagrange multipliers are given in 
the next two columns. The probability mass for the second interval was also constrained to zero and the 
resulting estimate is given in the seventh column, with the corresponding gradient and Lagrange multipliers 
in the last two columns. 

Inspection of the probabilities indicates that several of them are very small and hence may be 
zero at the maximum likelihood estimate. They were set to zero and the EM algorithm applied to 
the resulting renormalized probability vector. The new candidate optimal point is reported in the 
fourth column of Table 2, the reduced gradient, defined in 2.2, at this point is reported in the fifth 
column and the associated Lagrange multipliers in the sixth column. Notice that the Kuhn-Tucker 
conditions are approximately satisfied at the point reported in the fifth column of Table 2; hence 
we have found the maximum likelihood estimate at a point where six of the pj are zero. 

In this problem p, may be set to zero without any of the qi becoming zero. Doing this and 
applying the EM algorithm yields a self-consistent estimator that is not the maximum likelihood 
estimator as was described previously. However, an examination of the reduced gradient and the 
Lagrange multipliers at this point, the last three columns of Table 2, indicates that the Lagrange 
multiplier associated with p2 is negative and hence the Kuhn-Tucker conditions are violated at 
this point. It cannot be a maximum likelihood estimate. 
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