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 Empirical likelihood ratio confidence intervals for a single

 functional

 BY ART B. OWEN

 Department of Statistics, Stanford University, Stanford, California 94305, U.S.A.

 SUMMARY

 The empirical distribution function based on a sample is well known to be the maximum

 likelihood estimate of the distribution from which the sample was taken. In this paper

 the likelihood function for distributions is used to define a likelihood ratio function for
 distributions. It is shown that this empirical likelihood ratio function can be used to

 construct confidence intervals for the sample mean, for a class of M-estimates that

 includes quantiles, and for differentiable statistical functionals. The results are nonpara-

 metric extensions of Wilks's (1938) theorem for parametric likelihood ratios. The intervals

 are illustrated on some real data and compared in a simulation to some bootstrap
 confidence intervals and to intervals based on Student's t statistic. A hybrid method that
 uses the bootstrap to determine critical values of the likelihood ratio is introduced.

 Some key words: Bootstrap confidence interval; Empirical likelihood ratio; Nonparametric confidence
 interval; Nonparametric likelihood.

 1. INTRODUCTION

 Let X1,. .X. ,Xn be independent observations from a distribution function Fo. The
 empirical distribution function Fn is often considered a nonparametric maximum likeli-
 hood estimate of Fo because it maximizes

 n

 L(F)= n {F(X,) - F(Xi-)}

 over all distribution functions F. With this in mind, we define the empirical likelihood
 ratio function

 R(F) = L(F)IL(Fn). (1 1)

 Suppose that interest centres on T(F0), where T(.) is a statistical functional. The

 nonparametric maximum likelihood estimate of T(FO) is T(F,). The goal of this paper
 is to show that, under some reasonable conditions, sets of the form

 { T(F)IR(F) c} (1.2)

 may be used as confidence regions for T(FO).
 Statisticians use parametric likelihood ratio functions to construct confidence intervals

 and perform tests. In some situations nuisance parameters make it hard to use the
 likelihood ratio, or its distribution may be difficult to find. Wilks (1938) shows that under
 mild regularity conditions -2 log R has an asymptotic X(p) distribution, where Ro is the
 maximum of the likelihood ratio function subject to an hypothesis that places p restrictions
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 238 ART B. OWEN

 on the parameter vector, and the hypothesis is true. In this paper nonparametric versions

 of Wilks's theorem are proved. Attention is restricted to hypotheses of the form T(FO) = t
 which place a single restriction on Fo, and the results are used to provide an asymptotic
 justification of (1-2).

 From the outset it is obvious that regions given by (1-2) will not always work. For

 example, they fail dramatically when Fo is absolutely continuous and T(F) is the number
 of points at which F jumps. For the mean, the set given by (1 2) is the real line for any
 c < 1, unless a restricted set of distributions is considered. To see this observe that, for

 F= (1- E)F,, + EH and small enough E > O, we have R(F)- c and the mean of F can
 be made arbitrarily large by choosing the distribution H appropriately. A natural restric-

 tion is to distributions with support in [-M, M] for some finite positive M. It turns out

 to be possible to restrict to distributions with support in the sample, that is, to distributions

 F << F,,. This is convenient because the statistician might not be willing to specify a bound
 M and because it reduces the problem to one of finite dimension.

 The following theorem, proved in ? 3, shows that empirical likelihood ratio confidence

 intervals can be calculated for the mean.

 THEOREM 1. Let X, X1, X2, ... be independent random variables with nondegenerate

 distribution function Fo with J Ix' dFo < ?o. For positive c < 1 let

 'c n = {F | R(F) ?_: c, F << Fn}5

 and define XU n = sup J x dF and X,n = inf J x dF with both extrema taken over F E Scn
 Then as n ->ox

 pr{XL,n , E(X) XU,} -> pr (X21) -2 log c).

 The extrema over F << Fn are equivalent to extrema over F with support in [X(1), X(n)].
 If Fo has support in [-M. M], taking extrema over F supported in [-M, M] makes little
 difference asymptotically, because R(F) - c> O implies that the complement of
 {X1, ... , Xn } can have F probability at most O(n 1) and from Corollary 1 in ? 3 it follows
 that Xun , XL,n = OP (n )

 For each n, the empirical likelihood ratio function coincides with the likelihood ratio
 function of a multinomial on the observed data. As n increases, the representative power

 of the multinomial improves. For discrete Fo, this fact is all one needs. For continuous
 Fo however, the number of parameters in the multinomial is n -1 when there are n
 observations. Given that maximum likelihood estimates are often inconsistent when the
 number of nuisance parameters increases with n, it is perhaps surprising that the likelihood
 ratio intervals in Theorem 1 should inherit the coverage properties of finite parameter

 space likelihood ratio intervals.
 Computation of the empirical likelihood ratio confidence interval for the mean is

 considered in ? 2. In ? 4 empirical likelihood ratio confidence intervals are found for
 certain M-estimates including quantiles. A generalization to statistical functionals admit-

 ting a Frechet derivative is made in ? 5. A simulation comparing empirical likelihood
 ratio confidence intervals to bootstrap confidence intervals and intervals based on the
 central limit theorem is reported in ? 6. A hybrid method in which the chi-squared critical
 value is replaced by one obtained by bootstrapping is introduced in ? 6.

 Empirical likelihood ratios were first used by Thomas & Grunkemeier (1975). Their
 application was to survival probabilities estimated by the Kaplan-Meier curve. The
 Kaplan-Meier curve can be obtained as a nonparametric maximum likelihood estimate

 of the survival function from censored data. Thomas & Grunkemeier provide a heuristic
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 Empirical likelihood ratio confidence intervals 239

 argument to show that empirical likelihood ratio intervals for a survival probability based
 on the X(1) distribution have asymptotically correct coverage levels. Unlike delta-method
 intervals, Thomas & Grunkemeier's intervals can be asymmetric and they never include
 values outside [0, 1]. This is especially appealing for survival probabilities near 0 or 1.

 We conclude this section with an example, based on Data Set 9 of Stigler (1977). The
 data are taken from 20 of Newcomb's measurements of the passage time of light. Most
 of the observations are between 20 and 30, but there is a notable outlier at -44. Figure
 1 shows the function

 r(x)=sup {R(F)|{ vF(dv)=x, F<< Fn} (1.3)

 for these data. The horizontal lines shown are at the asymptotically justified 90% and

 95% levels for R. Also shown is the analogous function of x with the mean in (1.3)
 replaced by the median. This curve takes a jump at each observation, a larger jump where

 some observations are tied. The computations were also done for Huber's M-estimate,
 defined in Example 2 of ? 4. This curve, not shown, is quite smooth on the scale of Fig.
 1 and has nearly the same centre and width as the curve for the median. The constant c

 in Huber's M-estimate was fixed at 6 which is 1 5 times the sample median of the absolute
 deviations of the light measurements from their median. A parametric likelihood ratio

 curve from a normal location family is a normal density with mean 21-75 scaled to have
 a maximum value of unity. There is such a curve for each value of the variance. A natural
 choice here has standard deviation 3-8, the sample maximum likelihood estimate of the
 standard deviation.

 E 0 2

 -5 0. 5 0 1 0 2 0 3

 Mean Median

 o0 0-6

 20-4

 90%

 0.0 _J_
 -5 0 5 10 15 20 25 30 35

 Passage time

 Fig. 1. Maximized empirical likelihood ratio functions for mean and
 median passage times of light.

 2. COMPUTING INTERVALS FOR THE MEAN

 We begin with a device that simplifies the consideration of ties among the Xi. Let F
 be a distribution for X values and suppose

 j:Xj = X
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 240 ART B. OWEN

 The wi have the form of probabilities attached to observations instead of X values. Now
 define

 lw ~~~n
 L(F, w)=H wi,

 i=l

 where w is a vector whose components wi satisfy (2 1). The maximal value of L is attained
 when F = Fn and w, =. . = wn = l/n. With this in mind define

 lw ~~n
 R(F, w)=H nwi.

 i=l

 The functions L and R are observation based likelihood and likelihood ratio functions.

 LEMMA 1. For any c E [0, 1]

 {F: R(F) c}= {F: R(F, w) - c some w satisfying (2-1)},

 where F is a distribution function.

 Proof. Suppose R(F) ? c. Now put ij = {F(Xj) - F(X,-)}/tj, where 1 ti =
 card {XjIXj=Xi}. Then ii satisfy (2 1) and

 n n n

 R(F, w)=H I nwi = n I tj)H j fH (ti/n) = R(F) c.
 i=1 i=l i=l

 Conversely suppose R(F, w) ? c where the components of w satisfy (2 1). Then

 n n

 R (F) = R (F, w) cR (F. w) /R(F, w) = c I1 i/I wi ?, c.
 i=l i=l

 The final inequality follows by noting that in any set of tied observations the wi and the

 wi have the same sum, and since the wi are equal in the set, their product cannot be less
 than that of the wi. D

 In applications below both sets of distributions in Lemma 1 will be intersected with

 some other sets, such as {F<< Fn } or {T(F) = t}.
 It follows that the upper limits of the confidence intervals in Theorem 1 are of the form

 n

 XUn= SUp EWixi

 where wi are constrained by

 wi,0, wi=1, J7Jnwi c. (2 2)

 Similarly XL,n is an infimum constrained by (2 2). Both extrema occur at values wi that
 satisfy fl nwi = c.

 Next we derive an expression for the weights that give rise to the constrained extrema

 of the mean. Using Lagrange multipliers, let

 G = E wiXi +A A(I-E wi) + A,{log c-E log (nwi)}.

 Setting aG/awi = 0 yields wi = A2/ (Xi - A 1)
 For any value of A1, we may obtain A2 as a normalizing constant. Each A1 <X(l)

 corresponds to XL, for some value of c, and each A1 > X(n) corresponds to Xen- for some
 c. Other values of A1 produce at least one w, outside the unit interval.
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 Empirical likelihood ratio confidence intervals 241

 The appropriate AI for any value c E (0, 1) can be calculated by a zero finding algorithm
 such as Newton's method. It may be more convenient to pick a grid of A1 values and

 compute the corresponding value of wi, R and XL, or Xu,. Other values may be found
 by interpolation. The author has found

 X(1)-2j(X(n)-X(I)), X(n)+2j(X(n)-X(l)) (j =-5 -4, , 10)
 to be satisfactory values for A1. This method is quite convenient for use with statistical
 languages like S, minitab or GLIM.

 Efron (1981, eqn (11.8)) obtains the same weights wi in his discussion of the non-
 parametric tilting bootstrap. Efron treats the weights as a one parameter family through

 Fn. Replacing likelihood by Kullback-Liebler distance he gets an exponential family in
 which the bootstrap distribution of the mean can be fitted. By contrast, we use an

 asymptotic determination to form intervals.

 An alternative strategy is to compute for each x of interest the maximized likelihood
 ratio r(x) given by (1 -3) and find the two points at which r(x) = c. This approach underlies

 the proof of Theorem 1 in ? 3, and the algorithm for finding empirical likelihood ratio
 intervals for M-estimates described in ? 4.

 3. PROOF OF THEOREM 1

 Here we prove Theorem 1, which is stated in ? 1.

 Proof of Theorem 1. By Lemma 1 we may assume Xu, = sup E wiXi and XL,n = infI wEX,
 with both extrema taken over wi satisfying (2-2).

 We also assume without loss of generality that E(X) = 0. Because Fo is not degenerate
 and has mean 0, it follows that as n -> oo

 X(1) `< 0 `< X(n) (3-1)
 all but finitely often, with probability one. Henceforth assume (3 * 1). Then Ro- r(O) exists
 where r(.) is given by (1 '3), and XL,n - 0 < XUn if and only if c - Ro. Therefore we need
 only show that -2 log Ro-> X1) in distribution.

 To get an expression for Ro let

 G = E log nwi + y(1-E wi) + nA (O-E wiXi).

 Setting aG/awi =0 one obtains wi = 1/(y + nAX,) and summing wiaG/&wi shows that

 y = n. It follows that log R0 = -I log (1+ A OX), where AO is a root of

 0 = n-1 E Xil/(1 + AXi)g(A). (3.2)

 The desired root is in Jn = (-Xl) -X-1) for otherwise some wi are outside the unit
 interval. From (3 1) it follows that g'(A) <0, strictly, in Jn. Because g has limits x and
 -x0 at the ends of Jn, there is a unique zero AO of g in Jn. The Hessian of l log nwi is
 negative-definite so the stationary point of G is a constrained relative maximum of
 l log (nwi). The only other candidates for the supremum are the boundary points for
 which some wi = 0. Therefore Ao provides the unique constrained supremum Ro.

 The existence of J IX13 dFo is equivalent to l pr (IXn 13 > n) < oo and by the Borel-
 Cantelli lemma it follows that IXnI < n1/3 all but finitely often, with probability 1. This
 in turn implies that

 max IX,I< n113 (33)
 1sisn
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 242 ART B. OWEN

 all but finitely often with probability 1, since n"/3 eventually exceeds the largest of the

 finite collection of IXkl's that exceed k"l3. Therefore we assume that (3 3) holds.
 Now pick q <. We show that AO = Op(n q). Consider

 g(n-q) = n- E Xi/( + n-qXi) = - n-l-q E X2/(l + n-qXi)

 s X - n-qS2(1 +n-qnl/3)

 where S2 = n-1 I Xi2. Equivalently

 n2g(n-q) < nlg - nl 2/(nq + nl/3). (3*4)

 The first term on the right-hand side of (3 4) has a limiting normal distribution. The

 quantity subtracted goes to xo almost surely, so it follows that pr {g(n-q)>O}-0 and a

 similar result for g(-n -q) yields AO = O (n -q ).
 Let h = g1 and apply Taylor's theorem:

 AO = h(O) = h(X) + (O - X)h'(e) = -Xh'(6),

 where 11I-X1. Now h'(6)=1/g'(,q), where ij=h(e) and jrjI,IAOI. Therefore AO=
 roX/S2, where

 s2 _ x_ 2
 rO -_g'Qq) = {Xi/(1 + nXi)}2

 Since 1n1 - IAOI = 0p(n-q), we have qXi 0O(n-q)0(n13) = O(1) and hence r-o 1 in
 probability. Therefore AO = Op(n-2).

 Finally, we make the following Taylor expansion for all sufficiently large n:

 -2 log Ro = 2 E log (1 + AOX,) = 2 E AoXi - (AoXi)2 /2+ i (1nil < IAoXi13)

 =2nX2ro/S2-nS2(Xro/ S2)2 +>E ij = (2ro-r2) nX2/ s2 + E ni,

 where

 1I mij 1 IA013 E IX,V = Op(n-), 2rO-r2 = 1 + op(1),

 and nX2/S2_> Xi2) in distribution, by the central limit theorem. O

 COROLLARY 1. Under the conditions of Theorem 1, let Fo have mean ,u and variance oa2
 and let r(x) be given by (1 3). Let s2 = n- E (Xi -_X)2 and let r be any real constant. Then

 -2 log r(X + rsn) 2 2

 in probability, and

 -2 log r(,u + ran-) X

 the noncentral chi-squared distribution, with noncentrality parameter r2 as n -> 00.

 The proof of Theorem 1 applies here with minor modifications.
 From Corollary 1, we see that the confidence intervals are asymptotically the same as

 those obtained by using an approximation based on the central limit theorem for the
 mean of a sample. It remains to see whether there is a useful difference in small samples.

 Based on the simulation reported in ? 6, there does appear to be such a difference.
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 Empirical likelihood ratio confidence intervals 243

 Corollary 1 sheds some light on the asymptotic relative efficiency of inferences based
 on the empirical likelihood ratio. The following discussion is not rigorous and assumes
 that suitable regularity conditions hold. Suppose that Fo belongs to a parametric family
 indexed by u = E(X). Then, by comparing the curvature of the empirical log likelihood
 ratio function to that of the parametric log likelihood ratio function we obtain an

 asymptotic relative efficiency of {i,. var (X)}1-, where i, is the Fisher information for ,u
 in X. The same efficiency is obtained by inferences based on the central limit theorem.

 For many parametric families var (X) = i,2 which leads to an asymptotic relative
 efficiency of 1 for the empirical method. Some special cases are the binomial, Poisson,

 exponential and normal location families. The result holds for sufficiently regular one-
 parameter exponential families in which the mean of X is the natural parameter. The
 asymptotic relative efficiency is 0 5 in the double exponential location family and is
 approximately 091 in the logistic location family. In neither of these last two families
 is the sample mean the maximum likelihood estimate of the population mean.

 COROLLARY 2. Let

 En= pr {XL,f n E(X) Xu,n}-pr (X(il -2 log c)
 be the error of approximation in Theorem 1. If IXI M <00 with probability 1 then
 En = Op(n-2), as n->oo and ifE(IXIP)<oo for 3<p<oo then En = Op(n-2+/P) as n->oo.

 Proof. By the Berry-Esseen theorem nX2/S2_> X2) with errors of order Op(n-1). In the
 proof of Theorem 1, I qj = Op(n-2) so it only remains to consider the order of ro -1. If
 IXI M < xoo then JqXj SI M II = Op (n-2) whence ro- 1 = Op(n-2). If a pth absolute
 moment of X exists we may assume that max IXiI < n1IP all but finitely often and hence
 that LjXIj = Op(n-1)0(nlIP) - Op(n-+1/P) which implies that r0- 1 = Op(n-1+1/P).

 Note that the rate achieved for bounded random variables is the same as Wilks (1938)
 obtains for parametric likelihood ratios.

 4. M-ESTIMATES

 Theorem 1 extends readily to certain M-estimates. An M-estimate is a statistical
 functional defined as a root r = T(F) of

 T ((x, r)F(dX) =0. (441)

 Conditions must be imposed on 4i(x, t) to guarantee existence of a solution to (4.1).
 Further conditions may be adopted to provide a unique solution to (4 1), or a tie-breaking
 rule such as 'infimum of the roots' or 'closest root to the median of F' may be adopted
 to select a root. We will impose conditions on 'f expressed through families of univariate
 functions 'i.t and 'fx. given by

 f.t(x) = f(X, t) = fx.(t). (4 2)

 THEOREM 2. Let T(F) be a solution of (4 1) and let X,, X2 ... be independent random
 variables with common distribution Fo. Assume that q+(x, t) satisfies:

 (i) T(FO) = r exists and is unique,
 (ii) qf.,(x) measurable,
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 For positive c<l and R given by (11) let 9c, FIR(F) c,F<< F,I and

 SC,n Fe, { J' (x t) F(dx) O}

 Then pr { T(FO) (=-c Sn pr (X2i ? -2 log c) as n -> so.
 If qf also satisfies

 (v) qfx .(t) , x.(s) whenever t s

 for all x in the support of Fo then S,n is an interval.

 Proof. Let Zi = O(Xi, r), where r = T(FO) is the unique root of (4- 1) for F = Fo assumed
 in (i). Conditions (i)-(iv) yield that the Zi satisfy the conditions of Theorem 1 with
 E(Zi) = 0. Condition (ii) ensures that the Zi are random variables.

 From Lemma 1

 Scn = {tl wiqi(Xi, t) = 0, wi satisfy (2 2)}. (4.3)

 If rE ScSn then

 sup{1nwi wiZi =O0 wi,?>O, >wi=1} c (4-4)

 and conversely, since Hl nwi is continuous and the set over which the supremum is taken
 is compact. But (4.4) is equivalent to

 inf E wiZi , 0 S sup E wiZi

 with both extrema taken over wi satisfying (2.2). Therefore, because Zi satisfy the
 conditions of Theorem 1

 lim pr { T(FO) E SCn = pr (X(2 - -2 log c).
 n ->coo

 Now suppose (v) holds and that t1, t2 c Sc,, where t1 < s < t2. Then there exist wi1 and
 wi2 each satisfying (2.2) such that 1i wij,q(Xi, tj) = 0 (j = 1, 2). We show that s E Sc,n. Let
 aj = ,i wij (Xi, s). Then a1 - 0 - a2 by (iii). If a1 = 0 or a2 = 0 then s E Sn . Otherwise put
 A = a2/(a2-a1) and vj = Awj1+(1-A)wi2. It follows from Jensen's inequality that
 Y? v i x< - ;- Bu G c vfi(Xi, s)= 0 sO s Scn. Therefore Scn is an interval. O

 Example 1: Quantiles. Suppose Fo has a unique y quantile Q, where y c (0, 1). Then

 qf (XI t) = 1(x -- t), + {- / (1-) (x>t)

 determines Q, as the unique zero of (4.1) with F = Fo, and Theorem 2 shows that, for
 cc (0, 1), {T(F) | R(F) ? c, F<< Fn} is a confidence interval for Q, with asymptotic
 coverage a = pr (X(1) - -2 log c).

 Example 2: Huber's location M-estimate. Let

 tc (x-tB c),

 +f(x, t)= x - t ([x- tl< c),

 (-c (x-t S-c),

 and suppose that there is a unique solution to (4- 1) for F = Fo. Then the likelihood ratio
 confidence regions are intervals and their asymptotic coverage is determined by the X(1)
 distribution.
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 Empirical likelihood ratio confidence intervals 245

 We compute the likelihood ratio confidence region for T(F) by first computing

 r(t) = sup {HI nwil Z wit(Xi, t) = 0, wi 0 O, I wi = 1}

 and finding the region {t I r(t) ? c}. When this region is known to be an interval, a bisection
 algorithm can be used to find the endpoints once there are intervals in which the endpoints
 are known to lie. For interpretative purposes it would seem preferable to compute and

 plot a portion of r(t). Put Zi = if(Xi, t). If Z(1) < 0< Z(n) then the set over which r(t) is
 the supremum is nonempty. The maximizing value is HI nwi(A), where

 wi(A) = {n(1 +AZi)}-

 and A is the unique root of

 0 = n-1 E Zi/(l +kAZi)

 in the interval (-Z1), -Z-1). This all follows from the steps in the proof of Theorem 1.
 The value A may be found numerically. A safeguarded zero-finding algorithm such as

 Brent's method (Press et al., 1986, pp. 251-4) works well. The author has found that

 useful bracketting values of A can be found by solving {n(1 + Az)}1 = 2 with z taking
 the values Z(1) and Z(n).

 5. LIKELIHOOD INTERVALS FOR DIFFERENTIABLE FUNCTIONALS

 Theorem 1 justifies empirical likelihood ratio intervals for certain linear statistical

 functionals. Theorem 2 extends the result to M-estimates, which are defined through
 (4.1) in terms of linear statistical functionals involving i/. In this section we show that

 functionals admitting a Frechet derivative can be treated by applying Theorem 1 to the
 linear functionals given by their derivatives.

 Definition. Let I be a closed interval subset of 1R. Let D(I) be the set of real functions
 on I that are continuous from the right and have limits from the left. Equip D(I) with
 the sup norm:

 Ilfil = sup If(x)I.
 xeI

 A statistical functional T: D(I) -* Rl is said to be differentiable at Fo E D(I) if there
 exists a bounded linear transformation To: D(I) -* lR such that

 T(F) -T(Fo) - T(F- Fo)

 11 F - Foll

 as JIF-Foil-0.
 The linear transformation To is called the derivative of T at Fo.

 The definition above is that of Frechet differentiability. Existence of a Frechet derivative

 is a fairly strong condition, and a popular alternative is the Hadamard or compact
 derivative. It is also possible to use spaces other than D(I) for the domain of T. See
 Fernholtz (1983) for a discussion of differentiability of statistical functionals.

 When the derivative To exists we may write

 To(F-Fo)=f IC(x, Fo, T)F(dx),

 where IC(X, F0, T) is the influence curve of Hampel (1974).
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 THEOREM 3. Let X1,... , Xn be independent random variables with distribution FO. Let
 I be a closed interval that contains the support of Fo, and let T: D(I) -* lR be a statistical
 functional with derivative To at Fo. Then for positive c < 1

 sup I T(F) - T(FO) - T'(F - FO)I = op(n)-2

 as n -* oo, where the supremum is taken over F << Fn satisfying R(F) - c.

 Before proving Theorem 3 we give a technical lemma.

 LEMMA 2. For n = 1, 2, ... let Fn be the empirical distribution based on real observations
 X1,... , Xn, and let Gn be a sequence of distributions with Gn << Fn and R(Gn) ? cforpositive
 c < 1. Then Dn= |IFn - Gn |I = O(n-2) as n - oo.

 Proof. The proof is a long and straightforward analysis which we sketch here.

 One begins by reducing the problem to the case in which for each n and X1, .. ., Xn
 only two different values of Gn(Xi) - Gn(Xi-) occur. In this setting we have Dn =
 nz(1-z)e for >O0 and 0<z<1. The reduction is such that nzE 1. Furthermore

 R(Gn) = {1 + n(1- z).0}nz(l + nz )n(l-z).
 It then follows from R(Gn) - c that

 Dn -< (-2 log c)ln-I (5.1)

 by taking logs, using log (x) < 2(x - 1)/ (x + 1) for 0 < x < 1 and log (x) < 1 + x. El

 Equation (5.1) provides an explicit upper bound for n IIFn - Gn 1. The exponent of n
 cannot be reduced. Lemma 2 may be interpreted as providing a bound on the Kolmogorov-

 Smirnov distance between Fn and Gn " Fn in terms of the Kullback-Liebler distance.

 Proof of Theorem 3. Let F << Fn satisfy R (F) > c. Then

 IF-Fol F - Fn |I + II Fn - Fol = O(n-) + Op(n-2) = Op(n-2)

 using Lemma 2 and the well-known behaviour of Fn - Fo. By differentiability of T

 IT(F) - T(Fo) - To(F-FO)l = o(IIF-Foil) = op(n-2). C:

 Theorem 3 implies that { T(F) I R(F) - c, F<< Fn} is within op(n-2) of

 {T(Fo) + To(F-Fo) I R (F) - c, F << Fn}

 which is an interval for T(FO) with asymptotic coverage given by Theorem 1. The intervals
 from Theorem 1 have width Op(n-2) so the difference in confidence sets is asymptotically
 negligible.

 Example 1: Variance of a bounded random variable. Let I = [-M, M] for some M < oo,
 and let

 var (F) = x - E(F)}2F(dx)

 be the variance functional for distributions supported in I, where E(F) = . xF(dx). Then

 var has influence IC(x, var, F0) = (x - F0)2 - var (F0), where F0 = E(F0), and var is easily
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 shown to be differentiable. By Theorem 3

 {var (F) I R(F) - c, F<< Fn} (5.2)

 is asymptotically close to

 {j (x-Eo)2F(dx) I R(F) 3 c, F<< Fn} (5.3)

 for which Theorem 1 provides an asymptotic coverage level. While (5 3) shows that (5.2)
 is close to an interval with the right coverage it does not allow us to compute an interval

 because Eo is unknown. A little algebra and an application of Lemma 2 shows that

 {{ (x-X)2F(dx) I R(F) - c, F<< Fnj (5.4)

 is also close to an interval whose coverage of var (FO) may be taken from Theorem 1.
 The interval in (5 4) may be computed using the algorithm for the intervals for the mean,
 applied to (Xi - x)2 where X is the sample mean. Such intervals are conservative because
 var (F) |(x -X)2F(dx) for any F. E

 6. SIMULATION RESULTS

 Empirical likelihood ratio confidence intervals make very weak distributional assump-
 tions and are justified by having asymptotically correct coverage levels. In this regard
 they are like bootstrap confidence intervals and also like intervals based on Student's t

 statistic. This section describes a simulation experiment carried out to compare empirical
 likelihood ratios with various bootstrap methods and the t intervals. The methods will

 be compared on the problem of estimating the mean of a sample of size 20 taken from
 the chi-squared distribution on one degree of freedom. This should be a hard problem
 for nonparametric methods, because it is similar to the problem of estimating the variance
 from a normal sample, which Schenker (1985) shows is hard.

 The simulation was based on 1000 samples of 20 X21) random variables. These were
 obtained by squaring standard normal random variables produced by IMSL routine

 GGNML. From each sample a 90% empirical likelihood ratio confidence interval was
 computed, as was a Student's interval and the following bootstrap confidence intervals:

 percentile, bias-corrected percentile, bias-corrected accelerated percentile, and bootstrap
 t. The bootstrap intervals are discussed by Efron (1982), with the exception of bias-
 corrected accelerated intervals (Efron, 1987). A hybrid of bootstrap and empirical likeli-
 hood ratio confidence intervals was also tried. In the hybrid method the distribution of

 -2 log Ro assuming Fo = Fn is used in place of the limiting chi-squared distribution. The
 distribution of -2 log Ro for Fo = Fn is obtained by Monte Carlo; that is, a bootstrap
 distribution is used. This method will be called bootstrap calibrated empirical likelihood.
 For each sample 1000 bootstrap samples were drawn using IMSL routine GGUD. For
 comparison a parametric interval based on the 5th and 95th percentiles of the scaled

 X(22o) distribution of the sample sum of squares was included.
 The first column of Table 1 gives the observed coverage fraction for each method.

 Standard errors can be computed using the binomial formula, but it is more accurate to
 proceed as follows. Let X be an indicator that is 1 when the parametric interval contains
 the true mean and zero otherwise. Similarly let Y be the indicator of coverage for one

 of the other confidence interval methods. Then the coverage level for that method is
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 Table 1. Simulation results

 Observed Estimated

 central central Standard One-sided

 Method coverage coverage error NL>I Nu<, error

 Empirical likelihood 0-872 0-879 0-011 7 121 114

 Bootstrap calibrated

 empirical likelihood 0-906 0 913 0-010 5 89 84

 Percentile 0-827 0-834 0 011 23 150 127

 Bias corrected 0-829 0-836 0-010 36 135 99

 Bias corrected

 accelerated 0 845 0-852 0-008 50 105 55

 Bootstrap t 0-890 0-897 0-008 38 72 34

 Ordinary t 0-839 0-846 0.011 13 148 135

 Parametric 0 893 0 900 nil 51 56 7

 NL>I, the number of intervals in which the lower limit exceeds 1 0, the true mean of the X(l) distribution.
 Ideally should be 50 as should Nu<,, number of intervals in which upper limit less than 1. Measure of
 one-sided error given in right-hand column, INL,l - 501 + INu<, - 501.

 0 9 + E ( Y - X). The estimated values in Table 1 are based on the sample mean of Y - X
 and the standard errors are based on the sample variance of Y-X. The estimated
 coverages have standard errors on the order of 1%.

 Some readers may find it ironic that standard errors are used to assess the accuracy
 of these estimators instead of say, a bootstrap t interval for Y - X. But Y - X is not very

 skew and 1000 independent replications of it are available, so the central limit approxima-
 tion should be very good, and there should be correspondingly little to gain by more

 sophisticated interval estimates.
 Of the nonparametric methods, the bootstrap t has the best estimated central coverage.

 The bootstrap calibrated empirical likelihood ratio interval method is the second closest

 and these two methods are the only ones within two standard errors of the desired
 coverage level. The uncalibrated empirical likelihood ratio intervals are approximately

 two standard errors off the desired level and all other nonparametric intervals are more
 than four standard errors off the desired level.

 The noncoverage events observed in Table 1 are broken down according to the side

 of the true mean on which the interval fell. For all of the nonparametric methods
 noncoverage events are much more common for the upper confidence limit than for the
 lower. The bootstrap t method appears to have the best one-sided confidence intervals

 of any of the nonparametric methods considered. The two empirical likelihood methods
 have the worst lower endpoints. Intervals based on the ordinary t statistic and the

 percentile method have the worst upper endpoints.
 Compared to the usual intervals based on the t statistic, the empirical likelihood

 intervals are slightly worse on the lower endpoint, better on the upper endpoint and

 much better on central coverage. The bootstrap t is the only bootstrap method to
 outperform the empirical likelihood methods on all three counts.
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