Vandermonde Matrices with Chebyshev Nodes1

Ren-Cang Li2

January 2005
revised April 2005

ABSTRACT

For $n \times n$ Vandermonde matrix $V_n = (\alpha_j^{i-1})_{1 \leq i, j \leq n}$ with translated Chebyshev zero nodes, it is discovered that V_n^T admits an explicit QR decomposition with the R-factor consisting of the coefficients of the translated Chebyshev polynomials of degree less than n. This decomposition then leads to an exact expression for the condition number of its submatrix $V_{k,n} = (\alpha_j^{i-1})_{1 \leq i \leq k, 1 \leq j \leq n}$ (so-called rectangular Vandermonde matrix), bounds on individual singular value, and more. It is explained that how these results can be used to establish asymptotically optimal lower bounds on condition numbers of real rectangular Vandermonde matrices and nearly optimal conditioned real rectangular Vandermonde matrices on a given interval. Extensions are also made for V_n with nodes being zeros of any (translated) orthogonal polynomials other than Chebyshev ones.

It is also discovered that for V_{n+1} with translated Chebyshev extreme nodes, V_{n+1}^T admits an explicit QR-like decomposition as well. This QR-like decomposition also yields similar conclusions to those for V_n with translated Chebyshev zero nodes.

Applications to the study of sharpness in existing error bounds for the conjugate gradient method and the minimal residual method for linear systems and the symmetric Lanczos method for eigenvalue problems are also discussed.

1This report is available on the web at \url{http://www.ms.uky.edu/~math/MAreport/}.

2Department of Mathematics, University of Kentucky, Lexington, KY 40506 (rcli@ms.uky.edu.) This work was supported in part by the National Science Foundation CAREER award under Grant No. CCR-9875201.