Linear Programing Exam Sample Problems

March 6, 2007

1. Solve the linear programming problem

> Maximize
> $Z=4 x_{1}+5 x_{2}$
> subject to
> $x_{1}+2 x_{2} \leq 15$
> x_{1} and x_{2} nonnegative
2. In the following LP,B is a constant.

$$
\begin{gathered}
\text { Maximize } \\
Z=x_{1}+B x_{2} \\
\text { subject to } \\
3 x_{1}+7 x_{2} \leq 19 \\
x_{1} \geq 0 \quad x_{2} \geq 0
\end{gathered}
$$

What is the largest value of B such that x_{1} is a basic variable in the optimal solution?
3. Given the LP

$$
\begin{gathered}
\operatorname{minimize} \\
Z=-2 x_{1}-x_{2}+3 x_{3} \\
\text { subject to } \\
x_{2}-x_{3} \leq 10 \\
-x_{1}+4 x_{2} \leq 20 \\
x_{1} \geq 0 \quad x_{2} \geq 0 \quad x_{3} \geq 0
\end{gathered}
$$

Write down the dual LP.
4. In solving a linear programming problem by the simplex method, suppose you arrive at the folowing table.

Z	x_{1}	x_{2}	x_{3}	w_{1}	w_{2}	w_{3}	RHS
1	0	3.5	-.5	2.5	0	0	15
0	1	1.5	.5	.5	0	0	2.5
0	0	-5	0	-2	1	0	1
0	0	-.5	.5	-1.5	0	1	.5

Which variables arecurrently the basic variables? What is the entering basic variable? What is the leaving basic variable?
5. Given the LP

$$
\begin{gathered}
\text { Maximize } \\
Z=3 x_{1}+4 x_{2}+5 x_{3}+x_{4} \\
\text { subject to } \\
x_{1}+x_{2} \geq 7 \\
x_{1}+x_{3}+2 x_{4} \leq 50 \\
x_{2}+3 x_{4} \leq 80 \\
x_{1} \geq 0 \quad x_{2} \geq 0 \quad x_{3} \geq 0 \quad x_{4} \geq 0
\end{gathered}
$$

Write down the table for the auxiliary problem used to find an initial feasible solution. Perform one pivot operation and turn the infeasible table into a feasible table.

