PRACTICE FOR FINAL

Problem 1: Let $U \subset \mathbb{R}^{n}$ be a bounded, connected, C^{1} domain. Let $c \in C^{\infty}(\bar{U})$ be a nonnegative, smooth function. Show that the equation

$$
\begin{cases}-\Delta u+c(x) u=0 & \text { in } U \tag{1}\\ u=g & \text { on } \partial U\end{cases}
$$

has at most one (classical) solution.
Problem 2: Let $U=\{y>0\} \subset \mathbb{R}^{2}$. Solve the PDE

$$
\left\{\begin{array}{l}
u_{x}+u_{y}=u^{3} \quad(x, y) \in U \tag{2}\\
u(x, 0)=g(x)
\end{array}\right.
$$

On what domain does your solution makes sense?

Problem 3:

Use the method of separation of variables to find a solution to the backward heat equation

$$
\left\{\begin{array}{l}
u_{t}+u_{x x}=0 \tag{3}\\
u(t, 0)=u(t, \pi)=0 \\
u(0, x)=4 \sin (3 x)
\end{array} \quad(t, x) \in(0, \infty) \times(0, \pi)\right.
$$

What is the behavior of the solution as $t \rightarrow \infty$?

Problem 4:

Use the Fourier transform to solve the Klein-Gordon equation

$$
\begin{cases}u_{t t}-\Delta u+u=0 & t>0 \tag{4}\\ u(0, x)=g(x), \quad u_{t}(0, x)=h(x) & \end{cases}
$$

where g and h are Schwartz functions. Your final answer may include the inverse Fourier transform of a known function.

