HOMEWORK 1

1) Evans section 2.1 problem 1

2) Solve the following equation in \mathbb{R}^2 :

$$-xu_x = 0, \qquad u(0,x) = 3x$$

 u_t -Hint: Try to modify the function z(s) defined in class to

$$z(s) = u(t+s, xe^{-s}).$$

3) i) Show that if $u \in C^1(\mathbb{R}^2)$ is a solution of the transport equation

(1)
$$u_t + bu_x = 0$$

then

(2)
$$\int_{\mathbb{R}^2} u(\phi_t + b\phi_x) dx dt = 0$$

for all $\phi \in C_c^{\infty}(\mathbb{R}^2)$.

Hint: Pick a ball B so that ϕ is identically 0 outside of B, and integrate by parts in B.

ii) Motivated by i), we say that a function u is a weak solution of (1) if (2) holds for all $\phi \in C_c^{\infty}(\mathbb{R}^2)$. Show that u(t,x) = |x - bt| is a weak solution of (1), even though it is not differentiable everywhere.

Hint: Divide B into two domains B_1 and B_2 so that x - bt > 0 in B_1 and x - bt < 0 in B_2 . Integrate by parts separately in B_1 and B_2 . Carefully note that the terms inside B_1 and B_2 become 0, and that the boundary terms on the line x - bt = 0 are also 0.