HOMEWORK 1

1) Evans section 2.1 problem 1
2) Solve the following equation in \mathbb{R}^{2} :

$$
u_{t}-x u_{x}=0, \quad u(0, x)=3 x
$$

Hint: Try to modify the function $z(s)$ defined in class to

$$
z(s)=u\left(t+s, x e^{-s}\right)
$$

3) i) Show that if $u \in C^{1}\left(\mathbb{R}^{2}\right)$ is a solution of the transport equation

$$
\begin{equation*}
u_{t}+b u_{x}=0 \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} u\left(\phi_{t}+b \phi_{x}\right) d x d t=0 \tag{2}
\end{equation*}
$$

for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$.
Hint: Pick a ball B so that ϕ is identically 0 outside of B, and integrate by parts in B.
ii) Motivated by i), we say that a function u is a weak solution of (1) if (2) holds for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$. Show that $u(t, x)=|x-b t|$ is a weak solution of (1), even though it is not differentiable everywhere.

Hint: Divide B into two domains B_{1} and B_{2} so that $x-b t>0$ in B_{1} and $x-b t<0$ in B_{2}. Integrate by parts separately in B_{1} and B_{2}. Carefully note that the terms inside B_{1} and B_{2} become 0 , and that the boundary terms on the line $x-b t=0$ are also 0 .

