HOMEWORK 10

1) i) Let $U \subset \mathbb{R}^{2}$ be the complement of the unit ball, $U=\{|x| \geq 1\}$. Solve the PDE

$$
\begin{cases}x u_{x}+y u_{y}=0 & (x, y) \in U \\ u(x, y)=x & (x, y) \in \partial U\end{cases}
$$

What is the maximum domain of existence of the solution? Is the solution unique in that domain?
ii) Same question if $U=\{|x| \leq 1\}$ is the unit ball
2) Let $U=\{|x| \leq 1\} \subset \mathbb{R}^{2}$ be the unit ball. Consider the PDE

$$
\begin{cases}u_{x}+u_{y}=0 & (x, y) \in U \\ \left.u\right|_{\Gamma}=g & \Gamma \subset \partial U\end{cases}
$$

i) What are the characteristic points in ∂U ? Does your answer depend on what g is?
ii) Find a set Γ so that the PDE above has a unique global solution for all smooth g.
3) Consider Burger's equation

$$
u_{t}+u u_{x}=0, t>0, \quad u(0, x)=g(x)
$$

i) What are the characteristic points in ∂U ?
ii) Solve the equation for $g(x)=-x$. What is the maximum domain of existence of the solution?

