HOMEWORK 12 (OPTIONAL)

1) Let $f \in \mathcal{S}$ be a Schwartz function, $h \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ be constants. Show that

$$
\begin{aligned}
& \mathcal{F}\left(e^{i h \cdot x} f(x)\right)(\xi)=(\mathcal{F} f)(\xi-h) \\
& \mathcal{F}(f(\lambda x))(\xi)=\lambda^{-n}(\mathcal{F} f)\left(\lambda^{-1} \xi\right)
\end{aligned}
$$

2) i) Let $f \in C_{c}^{1}(\mathbb{R})$. Show that

$$
\lim _{\xi \rightarrow \pm \infty}(\mathcal{F} f)(\xi)=0
$$

ii) Show that the same conclusion holds true even if $f \in L^{1}(\mathbb{R})$. Hint: use i) and approximate f by functions in $C_{c}^{1}(\mathbb{R})$.
3) i) Evans 4.7 Problem 8
ii) For u and g as in i), show that the mass is conserved, i.e. for all $t>0$ we have

$$
\|u(t)\|_{L^{2}}=\|g\|_{L^{2}}
$$

