HOMEWORK 7

1) Evans section 2.5 problem 15
2) Let $g \in C\left(\mathbb{R}^{n}\right)$ be continuous and bounded, and $\vec{b} \in \mathbb{R}^{n}$. Find a solution to the equation

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+\vec{b} \cdot D u=0 \quad t>0 \\
u(0, x)=g(x)
\end{array}\right.
$$

Hint: Try to come up with a function v related to u that satisfies the heat equation.
3) Let $U=(0,1)$. Let u be a solution to

$$
\begin{cases}u_{t}-\Delta u=0 & t>0 \\ u(t, x)=0 & (t, x) \in[0, \infty) \times \partial U \\ u(0, x)=h \in C^{\infty}(U) & \end{cases}
$$

Let

$$
e(t)=\frac{1}{2} \int_{U}|u(t, x)|^{2} d x, \quad e_{1}(t)=\int_{U}\left|u_{x}(t, x)\right|^{2} d x
$$

i) Show that $e_{1}(t)$ is a nonincreasing function, and deduce that $\lim _{t \rightarrow \infty} e_{1}(t)$ exists.
ii) Recall from class that $\frac{d}{d t} e(t)=-e_{1}(t)$. Use i) to show that $\lim _{t \rightarrow \infty} e_{1}(t)=0$.
iii) Use Cauchy Schwarz and FTC to show that

$$
|u(t, x)| \leq\left(e_{1}(t)\right)^{1 / 2}
$$

Deduce that $\lim _{t \rightarrow \infty} u(t, x)=0$ for all $0<x<1$.

