MA 514 Assignment 4. Due Friday October 27 at 12:50pm.

Problem 4C. Show that if a simple graph on *n* vertices has *e* edges, then it has at least $\frac{e}{3n}(4e - n^2)$ triangles.

Problem 4A. Let G be a simple graph with 10 vertices and 26 edges. Show that G has at least 5 triangles. Can equality occur?

Problem 4D. Let $k \geq 2$.

- (a) Prove that a k-regular graph of girth 4 has at least 2k vertices.
- (b) Prove that a k-regular graph of girth 2h, where $h \ge 2$, has at least $\frac{2(k-1)^{h}-2}{k-2}$ vertices.

Problem 4H. Show that a graph on *n* vertices that does not contain a 4-cycle has at most $\frac{n}{4}(1+\sqrt{4n-3})$ edges.

Problem X4.1.

(a) Show that if G is simple with n vertices and is $K_{2,t}$ -free, then it satisfies

$$\sum_{v \in V} {\deg v \choose 2} \le (t-1) {n \choose 2}.$$

(b) Deduce that

$$M(n, K_{2,t}) \le \frac{1}{2}\sqrt{t-1}n^{\frac{3}{2}} + \frac{n}{4}$$

(c) Show that, given a set of n points in the plane, the number of pairs of points at unit distance is at most $\frac{n^{\frac{3}{2}}}{\sqrt{2}} + \frac{n}{4}$.