Multivariable Calculus

Nathaniel Stapleton

January 9, 2019

Welcome to Math 213, Spring 2019!

- Bookmark the course web page http://www.math.uky.edu/~perry/213-s19
- Bookmark the instructor webpage http://www.math.uky.edu/~njst237/213-s19
- Familiarize yourself with the Canvas Page for this course
- Print out a copy of the Course Calendar and keep in your notebook

Tests

- Tests are from 5-7 pm on Wednesday $2 / 6,3 / 6$, and $4 / 10$.
- The final exam is from $6-8 \mathrm{pm}$ on Wednesday $5 / 1$.
- Each test is worth 20% of your grade and the final is also worth 20% of your grade.
- For testing accommodations I need to see a letter from the DRC.
- If you have a conflict with one of these times and need an alternate exam, fill out of the form on the syllabus webpage as soon as possible.

Homework

Prepare for recitation tomorrow:

- Section 4: 11 AM in CB 341. Section 5: 8 AM in CB 337. Section 6: 9 AM in CB 337.
- Study section 12.1, pp. 792-796
- Begin problems 3, 5, 7, 15-23 (odd), 33, 35, 37, 41, 45, 47 in section 12.1, pp. 796-797
- Create your Webwork account by logging in through Canvas and going to Modules
- Begin Webwork Assignment A1 - Remember to access WebWork only through Canvas!

For Friday, read and study section 12.2, pp. 798-804.

Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Space
Lecture 2 Vectors: Moving Around in Space
Lecture 3 The Dot Product, Distances, and Angles
Lecture 4 The Cross Product, Areas, and Volumes
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces
Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and integrals of Vector Functions
Lecture 10 Motion in Space: Velocity and Acceleration
Lecture 11 Functions of Several Variables
Lecture 12 Exam 1 Review

Two and Three Dimensions

Find the set of points (x, y) that satisfy the inequality

$$
1<x^{2}+y^{2}<2
$$

Answer: The annulus centered at $(0,0)$ and bounded by circles of radii 1 and 2

Find the set of all points (x, y, z) that satisfy the inequality

$$
1<x^{2}+y^{2}+z^{2}<4
$$

Answer: The spherical shell centered at $(0,0)$ with inner radius 1 and outer radius 2

The Two Most Important Formulas in this Lecture

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Equation of a Sphere The equation of a sphere with center (h, k, ℓ) and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-\ell)^{2}=r^{2}
$$

