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Abstract. We prove that the image of the total power operation for Burnside rings A(G) →
A(G≀Σn) lies inside a relatively small, combinatorial subring Å(G,n) ⊆ A(G≀Σn). As n varies,
the subrings Å(G,n) assemble into a commutative graded ring Å(G) with a universal property:
Å(G) carries the universal family of power operations out of A(G). We construct character
maps for Å(G,n) and give a formula for the character of the total power operation. Using
Å(G), we extend the Frobenius–Wielandt homomorphism of [DSY92] to wreath products
compatibly with the total power operation. Finally, we prove a generalization of Burnside’s
orbit counting lemma that describes the transfer map A(G ≀ Σn) → A(Σn) on the subring
Å(G,n).
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1. Introduction

This paper explores consequences of the isomorphism of G ≀ Σn-sets

(G/H)×n ∼= (G ≀ Σn)/(H ≀ Σn),

which gives great control over the total power operation for the Burnside ring of G

Pn : A(G) → A(G ≀ Σn).

The total power operation sends the isomorphism class of a finite G-set X to the isomorphism
class of the G ≀Σn-set X×n. The smallest additive summand of A(G ≀Σn) generated by elements
of the canonical basis and containing the image of the total power operation is a relatively
small, combinatorial subring Å(G,n) ⊆ A(G ≀Σn). With an understanding of this combinatorial
structure, we prove that Å(G) =

⊕
n≥0 Å(G,n) inherits a commutative graded ring structure

from the transfer product on
⊕

nA(G ≀Σn). Additionally, we show that the construction Å(G)
is functorial in the underlying abelian group of A(G). With this in hand, we
A.) Show that Å(G) carries the universal family of power operations out of A(G).
B.) Describe a character map for Å(G,n).
C.) Give a formula for the character of Pn.
D.) Explicitly describe how any map of abelian groups A(H) → A(G) induces a map Å(H) →

Å(G) and give a formula for the character of this map.
This last item gives us the ability to extend the Frobenius–Wielandt map of [DSY92, Theorem
1] to the Burnside ring of the wreath product and also to give an elegant formula, in the spirit
of Burnside’s orbit counting lemma, for the transfer map A(G ≀Σn) → A(Σn) along the quotient
G ≀ Σn → Σn after restriction to Å(G,n) ⊆ A(G ≀ Σn).

To elaborate, let G be a finite group and let A(G) be the Burnside ring of G. This is a free
Z-module of rank equal to the number of isomorphism classes of transitive G-sets. The Burnside
ring admits a “character map” landing in Marks(G) = Fun(Conj(G),Z), where Conj(G) denotes
the set of conjugacy classes of subgroups of G. The character map is an isomorphism after
rationalization. The total power operation is a multiplicative map

Pn : A(G) → A(G ≀ Σn)

induced by taking a G-set X to the n-fold Cartesian product X×n equipped with the usual
G ≀ Σn-action.

Let Å(G,n) ⊆ A(G ≀ Σn) be as defined above. It turns out that this subset of A(G ≀ Σn) can
be described in many more ways. We provide three further descriptions here.

A finite G ≀Σn-set Y is called submissive if Y admits an equivariant embedding into X×n for
some G-set X. The coproduct and product of submissive sets are submissive. In particular, we
prove the following description of Å(G,n):

Proposition (Proposition 3.3). The ring Å(G,n) is the Grothendieck ring of isomorphism
classes of submissive G ≀ Σn-sets.

The ring Å(G,n) can also be described using the integer partitions of n decorated by the set
Conj(G). Such a partition of n is a function

λ : Conj(G)× N>0 → N

such that
∑

[H],m λ[H],m · m = n. The quantity λ[H],m counts the number of occurrences in
the partition λ of the natural number m decorated by the conjugacy class [H] ∈ Conj(G). Let
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Parts(G,n) be the set of integer partitions of n decorated by Conj(G) and Parks(G,n) be the
ring of integer valued functions on Parts(G,n).

There is a ring map β∗ : Parks(G,n) → Marks(G≀Σn) induced by a canonical map β : Conj(G≀
Σn) → Parts(G,n).

Proposition (Corollary 13.6). There is a pullback square of commutative rings

Å(G,n) A(G ≀ Σn)

Parks(G,n) Marks(G ≀ Σn),

χ

β∗

where χ is the character map.

This provides Å(G,n) with a character map Å(G,n) → Parks(G,n) that is an isomorphism
after rationalization.

For the third description, let A be an abelian group and let R =
⊕

n≥0Rn be a commutative
N-graded ring. An R-valued family of power operations on A is a family of functions (Pn : A→
Rn)n≥0 with the property that P0 is the constant function 1, Pn(0) = 0 for n > 0, and

Pn(x+ y) =
∑
i+j=n

Pi(x)Pj(y).

Let Pops(A,R) be the set of R-valued families of power operations on A. This assignment is
functorial in both A and R. As a functor of R, it is corepresentable by a commutative graded
ring Pow(A). Using these functors, we produce the following isomorphism:

Proposition (Corollary 6.7). There is a canonical isomorphism Pow(A(G)) ∼=
⊕

n Å(G,n) of
commutative graded rings.

To explain this isomorphism further, recall that the direct sum of abelian group A(G ≀ Σ) =⊕
nA(G ≀ Σn) acquires a commutative graded ring structure induced by the “transfer multipli-

cation”
X ⋆ Y = (G ≀ Σn)×G≀Σi×G≀Σj

(X × Y )

for i+ j = n, X a G ≀Σi-set, and Y a G ≀Σj-set. The family of power operations (Pn : A(G) →
A(G ≀ Σn))n≥0 gives rise to a map of commutative graded rings Pow(A(G)) → A(G ≀ Σ). This
map is injective with image Å(G) =

⊕
n Å(G,n).

Similarly, one can consider RU(G ≀ Σ) =
⊕

nRU(G ≀ Σn). In this case, work of Zelevensky
[Zel81] can be used to show that the family of power operations (Pn : RU(G) → RU(G ≀ Σn))
gives rise to an isomorphism of commutative graded rings Pow(RU(G))

∼=−→ RU(G ≀ Σ).
A map of abelian groups F : A(H) → A(G) induces a map

F̊ : Å(H,n) ∼= Pow(A(H))n → Pow(A(G))n ∼= Å(G,n).

Rationalization induces a linear map Q⊗ F : Marks(H,Q) → Marks(G,Q) using the character
isomorphism Q ⊗ A(G) ∼= Marks(G,Q), where Marks(G,Q) denotes Q ⊗ Marks(G). Simi-
larly, rationalization induces a linear map Q ⊗ F̊ : Parks(H,n,Q) → Parks(G,n,Q), where
Parks(G,n,Q) denotes Q⊗ Parks(G,n).

Theorem (Theorem 14.2). Let F : A(H) → A(G) be a map of abelian groups, let M be the
matrix representing Q ⊗ F : Marks(H,Q) → Marks(G,Q) in the bases consisting of conju-
gacy classes of subgroups, and let M̊ be the matrix representing Q ⊗ F̊ : Parks(H,n,Q) →
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Parks(G,n,Q) in the bases consisting of decorated partitions of n. We give an explicit formula
for the coefficients of M̊ in terms of the coefficients of M .

Note that this theorem applies to any additive map – not just to restriction and transfer
maps. Particularly interesting examples to consider are the transfer map along G → e and the
Frobenius–Wielandt map.

Let m = |G|. The Frobenius–Wielandt map is a ring homomorphism A(Cm) → A(G), where
Cm is the cyclic group of order m. It is induced by the map Marks(Cm) → Marks(G) coming
from the function Conj(G) → Conj(Cm) sending a conjugacy class of subgroups [H] to the
unique subgroup of Cm of order |H|. Notably, the Frobenius–Wielandt map is not, in general,
induced by a group homomorphism.

Theorem 14.2 together with the map β mentioned above, allows us to extend the Frobenius–
Wielandt map to wreath products:

Proposition (Corollary 18.2). Let m = |G| and n > 0. We construct a Frobenius–Wielandt
map

wn : A(Cm ≀ Σn) → A(G ≀ Σn)
compatible with the usual Frobenius–Wielandt map A(Cm) → A(G) through the total power
operation.

With this in hand, we explore the relationship between power operations and work of Romero
[Rom20] that gives a group-theoretic condition under which the Frobenius–Wielandt map com-
mutes with norms.

Acknowledgements. It is a pleasure to thank William Balderrama, Tobias Barthel, Ben
Braun, Sune Precht Reeh, and Tomer Schlank for helpful discussions related to this work. We
also appreciate Shahzad Kalloo’s enthusiasm, ideas, and virtual participation in the Kentucky
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Mehrle and Rose were supported by the eCHT under NSF Grant DMS-2135884. Stapleton
was supported by a Sloan research fellowship, NSF Grant DMS-2304781, and a grant from the
Simons Foundation (MP-TSM-00002836, NS).

2. Background and notation

Most of the material in this background section can be found in [Rym77, tD79, DSY92,
Bou10]. See [BMMS86] for more on power operations.

2.1. Burnside rings. Let G be a finite group. Let FinG denote the category of finite G-sets
and let A+(G) = π0FinG

∼= denote the set of isomorphism classes of finite G-sets. We denote
the isomorphism class of a finite G-set X by [X] ∈ A+(G). The coproduct (disjoint union) and
product of finite G-sets make A+(G) into a commutative semiring.

The Burnside ring A(G) is the Grothendieck ring of A+(G). As a Z-module, A(G) has a
canonical basis consisting of isomorphism classes of transitive finite G-sets. In this basis, the
multiplication is determined by the double coset formula

G/H ×G/K ∼=
∐

HgK∈H\G/K

G/(Hg ∩K),

where Hg denotes the conjugation g−1Hg.



ON THE IMAGE OF THE TOTAL POWER OPERATION FOR BURNSIDE RINGS 5

2.2. Restriction and transfer. Given a group homomorphism φ : H → G, there are functors

Resφ : FinG → FinH and Trφ : FinH → FinG

respectively called restriction and transfer. Restriction is induced by restricting the G-action
on a G-set to H along φ, and transfer is induced by sending an H-set X to the G-set G×H X.
In the literature, restriction is often called inflation when φ is surjective and transfer is often
called induction when φ is injective and deflation when φ is surjective.

These functors induce maps

Resφ : A(G) → A(H) and Trφ : A(H) → A(G).

Restriction is a ring map and transfer is an A(G)-module map for the action of A(G) on A(H)

through the restriction map.

2.3. External products. Given a finite G-set X and a finite H-set Y , the Cartesian product
X × Y is a finite G×H-set. To avoid ambiguity, we denote this operation by X ⊠ Y , which we
call the external product. The external product induces a functor

⊠ : FinG×FinH → FinG×H

and a homomorphism
⊠ : A(G)⊗A(H) → A(G×H).

2.4. Wreath products. We write G ≀ Σn for the wreath product, which is the semidirect
product G×n ⋊ Σn, where Σn acts on G×n on the left via permutations. Explicitly, for ḡ =

(ḡ1, . . . , ḡn) ∈ G×n and τ ∈ Σn, we write τ ḡ for the element in G×n with (τ ḡ)i = ḡτ−1(i). Then
the multiplication in G ≀Σn is given by (ḡ, σ)(h̄, τ) = (ḡ σh̄, στ). If G acts on the left on a space
X, then G ≀ Σn acts on X×n on the left. Explicitly, we have

((ḡ, σ)x)i = ḡixσ−1(i).

2.5. Finite sets and orders. For n ∈ N, let [n] denote a set of size n. We identify the
symmetric group Σn with the group Σ[n] = Aut([n]) of bijections of the set [n]. When i+ j = n,
any identification [i]⨿ [j] ∼= [n] induces an embedding Σi×Σj ↪→ Σn. Each of these embeddings
is conjugate, and we will only use these maps to induce operations on Burnside rings or similar
conjugacy invariant objects, so the choice of embedding is immaterial. More generally, for X
some set and functions m, f : X → N where f has finite support, we will consider embeddings
of the form ∏

x∈X
Σ

×f(x)
m(x) ↪→ Σn where n =

∑
x∈X

f(x)m(x).

Such embeddings arise from choosing any identification
∐
x∈X [f(x)] × [m(x)] ∼= [n]. Again, all

such embeddings are conjugate, so the particular choice is immaterial. These identifications also
induce embeddings of the form

G ≀ Σi ×G ≀ Σj ↪→ G ≀ Σn and
∏
x∈X

(G ≀ Σm(x))
×f(x) ↪→ G ≀ Σn,

each of which is conjugate to any other.
Similarly, for a set X, we will identify X×n with X [n] =

∏
[n]X. Any identification [i]⨿ [j] ∼=

[n] induces a bijection X×i ×X×j ∼= X×n. Unfortunately, the distinction between these bijec-
tions often matters: sometimes it is necessary that the X×i factor appear ‘first.’ Accordingly,
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we implicitly choose total orders on the sets [n], and we put the lexicographic ordering on prod-
ucts and disjoint unions. In this situation, there is exactly one order preserving isomorphism
[i]⨿ [j] ∼= [n], and we use this one to induce ‘the’ bijection X×i ×X×j ∼= X×n. Similarly, when
an arbitrary total order is selected on X, there is exactly one order preserving isomorphism∐
x∈X [f(x)]× [m(x)] ∼= [n].
We use these choices to induce ‘the’ embeddings

Σi × Σj ⊆ Σn,
∏
x∈X

Σ
×f(x)
m(x) ⊆ Σn, G ≀ Σi ×G ≀ Σj ⊆ Σn, and

∏
x∈X

(G ≀ Σm(x))
×f(x) ⊆ G ≀ Σn,

when such a particular choice is desired.

2.6. Transfer products. Let n = i+ j. Given a finite G ≀ Σi-set X and a finite G ≀ Σj-set Y ,
we will be interested in the induced G ≀ Σn-set

X ⋆ Y = Trφ(X ⊠ Y ),

where φ is the embedding G ≀ Σi × G ≀ Σj ⊆ G ≀ Σn. To avoid clutter, we suppress the groups
from the notation and write Trni,j for the transfer along φ. This determines a functor

⋆ : FinG≀Σi ×FinG≀Σj → FinG≀Σn

and a homomorphism

⋆ : A(G ≀ Σi)⊗A(G ≀ Σj) → A(G ≀ Σn),

which we call the transfer product.

2.7. The marks homomorphism. Let Conj(G) denote the set of conjugacy classes of sub-
groups of G. The conjugacy class of a subgroup H ⊆ G is denoted by [H]. There is a canonical
bijection between the set Conj(G) and the set of isomorphism classes of transitive G-sets sending
the conjugacy class [H] to the isomorphism class [G/H].

For a commutative ring R, let Marks(G,R) be the ring of R-valued functions on the set
Conj(G). If R is omitted, it is assumed to be Z. This is often referred to as the “ghost ring” in
the literature. The ring Marks(G,R) has an R-linear basis given by the indicator functions

1[H] : [K] 7→

{
1, [H] = [K]

0, otherwise

for [H] ∈ Conj(G).
The marks homomorphism, which we also call the character map, is the ring homomorphism

χ = χG : A(G) → Marks(G)

that sends a G-set X to the function on Conj(G) given by cardinalities of fixed point sets

χ([X]) : [H] 7→ |XH |.

The marks homomorphism is injective and an isomorphism after rationalization. In other words,

Q⊗ χ : Q⊗A(G) → Q⊗Marks(G) ∼= Marks(G,Q)

is an isomorphism of commutative rings.



ON THE IMAGE OF THE TOTAL POWER OPERATION FOR BURNSIDE RINGS 7

2.8. Induced operations on marks. Since Resφ and Trφ are additive, rationalization induces
maps

Resφ : Marks(G,Q) → Marks(H,Q) and Trφ : Marks(H,Q) → Marks(G,Q)

that fit into commutative squares

A(G) A(H)

Marks(G,Q) Marks(H,Q)

Resφ

χG χH

Resφ

and
A(H) A(G)

Marks(G,Q) Marks(H,Q)

Trφ

χH χG

Trφ

witnessing compatibility with the marks homomorphism.
Similarly, since ⊠ and ⋆ are bilinear, rationalization induces maps

⊠ : Marks(G,Q)⊗Marks(H,Q) → Marks(G×H,Q)

and

⋆ : Marks(G ≀ Σi,Q)⊗Marks(G ≀ Σj ,Q) → Marks(G ≀ Σn,Q)

fitting into commutative squares

A(G)⊗A(H) A(G×H)

Marks(G,Q)⊗Marks(H,Q) Marks(G×H,Q)

⊠

χG⊗χH χG×H

⊠

and

A(G ≀ Σi)⊗A(G ≀ Σj) A(G ≀ Σn)

Marks(G ≀ Σi,Q)⊗Marks(G ≀ Σj ,Q) Marks(G ≀ Σn,Q)

⋆

χG≀Σi
⊗χG≀Σj

χG≀Σn

⋆

witnessing compatibility with the marks homomorphism.

2.9. Formula for restriction on marks. To give a formula for the restriction along φ : H → G

on marks, consider the induced function

φ : Conj(H) → Conj(G) : [K] 7→ [φ(K)].

Precomposition with this function gives the restriction:

Resφ(f)([K]) = f(φ[K]) = f([φ(K)])

for f ∈ Marks(G,Q) and [K] ∈ Conj(H). In fact, this formula defines restrictions

Resφ : Marks(G,R) → Marks(H,R)

for any coefficient ring R.
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2.10. Formula for transfer on marks. The formula for the transfer map on marks is more
complicated. Along a subgroup inclusion H ⊆ G, the formula is given by

TrH⊆G(f)([K]) =
∑

gH∈G/H
Kg⊆H

f([Kg])

for f ∈ Marks(H) and [K] ∈ Conj(G). This defines transfers

TrH⊆G : Marks(H,R) → Marks(G,R)

for any coefficient ring R. At the other extreme, when φ : G↠ e is a surjection onto the trivial
group, Burnside’s orbit counting lemma gives the beautiful formula

TrG↠e(f)([e]) =
1

|G|
∑
g∈G

f([⟨g⟩]),

for f ∈ Marks(G,Q), where [⟨g⟩] denotes the conjugacy class of the cyclic subgroup generated
by g ∈ G. Applied to χ([X]) for a finite G-set X, the formula demonstrates that the number of
orbits for the G-action on X is equal to the average of the number of fixed points of X by the
elements of G. More general transfer formulas can be found in [Bou10, Chapter 5].

2.11. Formula for external product on marks. To give a formula for the external product
on marks, note that for a finite G-set X, a finite H-set Y , and a subgroup K ⊆ G×H,

(X × Y )K ∼= Xπ1K × Y π2K ,

where the πi’s denote the projections. From this, we conclude that

(f ⊠ g)([K]) = f(π1[K])g(π2[K]) = f([π1(K)])g([π2(K)])

for f ∈ Marks(G,Q), g ∈ Marks(H,Q), and [K] ∈ Conj(G ×H). In fact, this formula defines
external products

⊠ : Marks(G,R)⊗Marks(H,R) → Marks(G×H,R)

for any coefficient ring R.

2.12. Formula for the transfer product on marks. Let n = i + j. The formula for the
transfer product on marks is given by

(f ⋆ g)([H]) =
∑

σ(Σi×Σj)∈Σn/(Σi×Σj)
Hσ⊆G≀Σi×G≀Σj

f(π[i][H
σ])g(π[j][H

σ])

for f ∈ Marks(G ≀Σi,Q), g ∈ Marks(G ≀Σj ,Q), and [H] ∈ Conj(G ≀Σn) where π[i] : Σ[i]×Σ[j] →
Σ[i] denotes the projection and similarly for π[j].

In fact, since this formula is integral, it defines transfer products

⋆ : Marks(G ≀ Σi, R)⊗Marks(G ≀ Σj , R) → Marks(G ≀ Σn, R)

for any coefficient ring R.
To see the correctness of the formula, notice that∑

σ(Σi×Σj)∈Σn/(Σi×Σj)
Hσ⊆G≀Σi×G≀Σj

f(π[i][H
σ])g(π[j][H

σ]) =
∑

(ḡ,σ)(G≀Σi×G≀Σj)∈(G≀Σn)/(G≀Σi×G≀Σj)

H(ḡ,σ)⊆G≀Σi×G≀Σj

f(π[i][H
(ḡ,σ)])g(π[j][H

(ḡ,σ)])
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using the bijection Σn/(Σi × Σj) ∼= (G ≀ Σn)/(G ≀ Σi ×G ≀ Σj) and that the latter expression is
exactly the composition of the formulas for the external product and for Trni,j .

2.13. Commutative graded rings. Define

A(G ≀ Σ) =
⊕
n≥0

A(G ≀ Σn) and Marks(G ≀ Σ, R) =
⊕
n≥0

Marks(G ≀ Σn, R).

When R is omitted, it is assumed to be Z. The transfer product induces a commutative,
associative, and unital operation on these graded abelian groups. Thus, the transfer product
gives these objects the structure of a commutative N-graded ring (as opposed to a graded
commutative ring, which satisfies xy = (−1)|x||y|yx). The unit of A(G ≀ Σ) is 1 ∈ A(G ≀ Σ0) =

A(e) ∼= Z, and the unit of Marks(G ≀Σ, R) is the indicator function 1 = 1[e] ∈ Marks(G ≀Σ0, R) =

Marks(e,R) ∼= R of [e] ∈ Conj(G≀Σ0). The graded rings A(G≀Σ) and Marks(G≀Σ) are connected
in the sense that the degree 0 subrings A(G ≀ Σ0) and Marks(G ≀ Σ0) are isomorphic to Z.

The level-wise restriction and transfer maps along φ : H → G are compatible with the transfer
product and therefore induce graded ring maps1

Resφ : A(G ≀ Σ) → A(H ≀ Σ) and Trφ : A(H ≀ Σ) → A(G ≀ Σ).

There are also graded ring maps

Resφ : Marks(G ≀ Σ, R) → Marks(H ≀ Σ, R) and Trφ : Marks(H ≀ Σ, R) → Marks(G ≀ Σ, R),

although the transfer is only defined when the coefficients of the linear map Trφ≀Σn
: Marks(H ≀

Σn,Q) → Marks(G ≀ Σn,Q) are elements of R.
Similarly, the level-wise marks homomorphisms induce a graded ring map

χ : A(G ≀ Σ) → Marks(G ≀ Σ),

which is an isomorphism after tensoring with Q. In other words,

Q⊗ χ : Q⊗A(G ≀ Σ) → Q⊗Marks(G ≀ Σ) ∼= Marks(G ≀ Σ,Q)

is an isomorphism.

2.14. Graded monoid rings. An augmented monoid will refer to a monoid equipped with a
homomorphism into N called the size or augmentation. The augmentation of an augmented
monoid M is denoted by M → N : m 7→ ∥m∥. Given an augmented monoid M , the monoid ring
Z[M ] is an N-graded ring. This produces a functor from the category of augmented monoids to
the category of N-graded rings with grading preserving maps.

2.15. Power operations. For n ≥ 0, the total power operation

Pn : A+(G) → A+(G ≀ Σn)

is defined by Pn([X]) = [X×n] for X a finite G-set. These maps are multiplicative and satisfy
an additivity relation in terms of the transfer product

Pn(X + Y ) =
∑
i+j=n
i,j≥0

Pi(X) ⋆ Pj(Y ) =
∑
i+j=n
i,j≥0

Trni,j(Pi(X)⊠ Pj(Y )).

1Note that this does not induce the structure of a Mackey functor on G 7→ A(G ≀Σ) as these restrictions and
transfers do not obey the double coset formula, as is easily verifiable in degree 0.
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The operation P0 is the constant function 1, and Pn(0) = 0 for n > 0. The total power operation
extends to a map

Pn : A(G) → A(G ≀ Σn)
by enforcing the above additivity relation. Specifically, Pn(X−Y ) may be computed inductively
by using that

Pn(X) = Pn((X − Y ) + Y ) = Pn(X − Y ) +
∑
i+j=n
i≥0, j>0

Pi(X − Y ) ⋆ Pj(Y ).

A closed form is given in Corollary 12.2.

2.16. The Frobenius–Wielandt map. Let G be a finite group, letm = |G|, and let Cm be the
cyclic group of order m. The Frobenius–Wielandt map is a strange ring map A(Cm) → A(G).
This ring map is unusual since it is not induced by restriction along a group homomorphism.
Instead, it is induced by the map

Cyc: Conj(G) → Conj(Cm)

sending a conjugacy class [H] to the conjugacy class of the unique subgroup of Cm of order |H|.
This induces a ring map

w = Cyc∗ : Marks(Cm) → Marks(G).

In [DSY92], it is shown that the induced map A(Cm) → Marks(G), given by precomposing w
with the marks homomorphism, factors through A(G), providing the ring map w : A(Cm) →
A(G).

3. The summand Å(G,n) ⊆ A(G ≀ Σn)

Definition 3.1. Let Å(G,n) ⊆ A(G ≀ Σn) be the summand spanned by the smallest subset of
the canonical basis whose span contains the image of the total power operation Pn : A(G) →
A(G ≀ Σn).

In this paper, we give many equivalent descriptions of Å(G,n). We begin with a description
of Å(G,n) as a Grothendieck ring.

Definition 3.2. We say that a finite G ≀Σn-set X is submissive if it admits a G ≀Σn-equivariant
injection into a G ≀ Σn-set of the form Y ×n for some G-set Y .

The disjoint union and product of submissive G ≀ Σn-sets are submissive: If X1 ↪→ Y1
×n and

X2 ↪→ Y2
×n, then X1 ⨿ X2 ↪→ (Y1 ⨿ Y2)

×n and X1 × X2 ↪→ (Y1 × Y2)
×n, and it is clear that

the empty union ∅ and empty product ∗ are submissive G ≀Σn-sets. Thus, we may consider the
Grothendieck ring of (isomorphism classes of) submissive G ≀ Σn-sets.

Any transitiveG≀Σn-subset of a submissive set is also submissive, so the category of submissive
G ≀ Σn-sets is generated under finite coproducts by the transitive submissive G ≀ Σn-sets in the
same way that the category of finite G ≀ Σn-sets is generated under finite coproducts by the
transitive G ≀ Σn-sets. Thus the Grothendieck ring of submissive G ≀ Σn-sets is freely generated
as an abelian group by the isomorphism classes of transitive submissive G≀Σn-sets. In this sense,
we may consider the Grothendieck ring of submissive G ≀ Σn-sets as a subring of A(G ≀ Σn).

Proposition 3.3. The Grothendieck ring of submissive G ≀Σn-sets is the summand Å(G,n) ⊆
A(G ≀ Σn).
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Proof. First we show that the Grothendieck ring of submissive G≀Σn-sets is contained in Å(G,n).
This follows from the fact that if X ↪→ Y ×n is a submissive G ≀ Σn-set, each of the transitive
G ≀Σn-subsets of X are also subsets of Y ×n. Since Pn([Y ]) = [Y ×n] is in the image of the total
power operation, each of these transitives is in Å(G,n), and thus [X] is in Å(G,n).

For the other inclusion, note that if [(G≀Σn)/K] appears in the basis decomposition of Pn([Y ]),
then (G ≀Σn)/K injects into Y ×n and so (G ≀Σn)/K is a submissive G ≀Σn-set. Thus, we see that
the Grothendieck ring of submissive G ≀Σn-sets contains the basis members required to express
the image of the power operation A+(G) → A(G ≀ Σn). Further, this is enough to express
the image of the larger power operation A(G) → A(G ≀ Σn) because each of the transitives
appearing in the basis decomposition of Pn([X] − [Y ]) appear in the basis decomposition of
Pn([X]+m[Y ]) for large enoughm. Although the proof of this fact is too technical to appear here,
we prove it as Corollary 12.3 using the language of partitions and compositions to manipulate
the relation describing power operations applied to sums. Alternatively, one may use the graded
ring structure of Section 5 together with Corollary 6.5 to complete the proof. □

Proposition 3.4. Let φ : H → G be a group homomorphism. Then Resφ≀Σn : A(G ≀ Σn) →
A(H ≀ Σn) restricts to a ring map

Resφ : Å(G,n) → Å(H,n)

and Trφ≀Σn : A(H ≀ Σn) → A(G ≀ Σn) restricts to a map of abelian groups

Trφ : Å(H,n) → Å(G,n).

Proof. For the restriction map, it suffices to notice that the restriction of a submissive G ≀Σn-set
along φ ≀Σn is submissive. This follows from the fact that if Y is a finite G-set, then there is an
isomorphism of H ≀ Σn-sets Resφ≀Σn

(Y ×n) ∼= (Resφ(Y ))×n.
For the transfer map, let X be a submissive H ≀ Σn-set and choose an injection X ↪→ Y ×n.

The proposition follows from the fact that

G ≀ Σn ×H≀Σn
X ↪→ G ≀ Σn ×H≀Σn

Y ×n

is injective and there are isomorphisms of G ≀ Σn-sets

G ≀ Σn ×H≀Σn
Y ×n ∼= (G×H Y )×n. □

Proposition 3.5. The transfer product ⋆ : A(G ≀ Σi) ⊗ A(G ≀ Σj) → A(G ≀ Σn) restricts to a
transfer product

⋆ : Å(G, i)⊗ Å(G, j) → Å(G,n)

where n = i+ j.

Proof. This follows from the fact that if X1 ↪→ Y1
×i and X2 ↪→ Y2

×j are submissive G ≀ Σi and
G ≀ Σj-sets respectively, then

X1 ⋆ X2 ↪→ Y1
×i ⋆ Y2

×j ↪→
∐

i′+j′=n

Y1
×i′ ⋆ Y2

×j′ ∼= (Y1 ⨿ Y2)
×n. □

Remark 3.6. We are certainly not the first to notice that the image of the total power operation
is very small relative to the size of A(G ≀ Σn) and also reasonably well-behaved. For instance,
this is noted in [Sch, Remark 9.3].
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4. Decorated partitions

Partitions, i.e. formal sums of positive integers, are important in the study of symmetric
groups. In this paper, we will make use of X-decorated partitions, where X is a set. These
are sometimes called colored partitions. An X-decorated partition is a formal sum of pairs in
X ×N+. Such a pair is called a part. A part is interpreted as its integer component, called the
size of the part, ‘decorated’ by the X component. The classical theory of integer partitions is
recovered when X = ∗ is a singleton.

We write the collection of X-decorated partitions as P (X) = N{X × N+}. We identify this
collection with finite support functions

λ : X × N+ → N : x,m 7→ λx,m.

The finite support function λ is identified with the formal sum

λ =
∑

x∈X,m∈N+

λx,m · (x,m)

containing λx,m-many parts of size m and decoration x. When λ ∈ P (∗) is an integer partition,
we write λm instead of λ∗,m. In this situation, it is important to note that λm denotes the
number parts of size m in the partition and not the mth formal summand (in some chosen
ordering). Decorated partitions will be generally denoted by the lowercase Greek letters κ, λ, µ
or less frequently γ, δ, ε.

We generalize the structure (and notation) of integer partitions to decorated partitions. For-
mal summation gives P (X) the structure of a free commutative monoid

κ+ λ : x,m 7→ κx,m + λx,m.

The identity of this monoid is the empty partition 0. The number of parts in a partition λ is
called its length and is denoted

|λ| =
∑
x,m

λx,m.

The sum of the sizes of the parts in a partition λ is called its size and is denoted

∥λ∥ =
∑
x,m

λx,m ·m.

A partition of size n may also be called a partition of n. If X is finite, there are finitely many
X-decorated partitions of size n. Length and size are additive so that |κ + λ| = |κ| + |λ| and
∥κ + λ∥ = ∥κ∥ + ∥λ∥. The size map P (X) → N gives P (X) the structure of an augmented
monoid.

We also define the factorial and multifactorial which are respectively given by

λ! =
∏
x,m

λx,m! and ((λ))! =
∏
x,m

(m!)λx,m .

The multifactorial is exponential so that ((κ+λ))! = ((κ))!·((λ))!, but there is no such relationship
for the factorial. Given a function f : X → Y , there is a pushforward map f∗ : P (X) → P (Y )

which corresponds to a fiber sum of finite support functions

f∗λ : y,m 7→
∑

x∈f−1(y)

λx,m.
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The pushforward f∗ preserves addition, length, size, and the multifactorial, and it preserves the
factorial when f is injective.

Of particular importance in this paper are partitions decorated by Conj(G). Recall that
Conj(G) denotes the conjugacy classes of subgroups of G.

Definition 4.1. Let Parts(G) = P (Conj(G)) denote the set of Conj(G)-decorated partitions.
The set of Conj(G)-decorated partitions of size n is denoted by Parts(G,n).

In this notation Parts(G) =
∐
n Parts(G,n). We identify Parts(e) with the set of integer

partitions P (∗).

5. The graded rings A(G ≀ Σ) and Å(G)

Recall the commutative graded ring A(G ≀ Σ) =
⊕

n≥0A(G ≀ Σn) from Subsection 2.13.

Definition 5.1. Let Conj(G ≀Σ) =
∐
n≥0 Conj(G ≀Σn) denote the collection of conjugacy classes

of subgroups of G ≀ Σn as n varies.

Recall that there is a canonical bijection between the set Conj(G) and the set of isomorphism
classes of transitive G-sets. This corresponds to the canonical additive basis for A(G ≀Σ), where
the conjugacy class [H] ∈ Conj(G ≀Σn) corresponds to the degree n basis element [(G ≀Σn)/H] ∈
A(G ≀ Σn) ⊆ A(G ≀ Σ).

Proposition 5.2. The transfer product on A(G ≀ Σ) induces the structure of a commutative
augmented monoid on Conj(G ≀ Σ) via the embedding Conj(G ≀ Σ) ↪→ A(G ≀ Σ). Explicitly, for
[H] ∈ Conj(G ≀ Σi) and [K] ∈ Conj(G ≀ Σj),

[H] ⋆ [K] = [H ×K] ∈ Conj(G ≀ Σn),

where n = i+ j and H ×K ⊆ G ≀ Σi ×G ≀ Σj ⊆ G ≀ Σn. The augmentation Conj(G ≀ Σ) → N is
given by [H ⊆ G ≀ Σn] 7→ n.

Proof. The fact that this is associative, commutative, and unital follows from the fact that the
transfer product has these properties and that the unit for the transfer product is transitive. It
is also immediate that the augmentation is a homomorphism. The explicit formula follows from
the fact that

[(G ≀ Σi)/K] ⋆ [(G ≀ Σj)/J ] = Trni,j([(G ≀ Σi)/K]⊠ [(G ≀ Σj)/J ])
= Trni,j([(G ≀ Σi ×G ≀ Σj)/(K × J)])

= [(G ≀ Σn)/(K × J)]. □

Corollary 5.3. The graded ring A(G≀Σ) is isomorphic to the graded monoid ring Z[Conj(G≀Σ)]
where the grading is given by the augmentation as in Subsection 2.14.

We now consider an augmented monoid homomorphism Parts(G) → Conj(G ≀ Σ). This is
easy to construct as Parts(G) is a free commutative monoid.

Definition 5.4. Let
α : Parts(G) → Conj(G ≀ Σ)

be the augmented monoid homomorphism induced by sending the generator ([H],m) ∈ Parts(G)

to [H ≀Σm] ∈ Conj(G ≀Σm). For λ ∈ Parts(G,n), let [(G ≀Σn)/α(λ)] denote the transitive G ≀Σn-
set corresponding to α(λ) under the canonical bijection between conjugacy classes of subgroups
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and isomorphism classes of transitive sets. Explicitly, [(G ≀ Σn)/α(λ)] = [(G ≀ Σn)/H] for any
representative H ∈ α(λ) of the conjugacy class α(λ).

By construction, α is augmented i.e. α(λ) ∈ Conj(G≀Σ∥λ∥) for each λ. Accordingly, α restricts
to maps Parts(G,n) → Conj(G ≀ Σn). The homomorphism α has the explicit formula

α(λ) = ⋆
[H],m

[H ≀ Σm]⋆λ[H],m =

 ∏
[H],m

(H ≀ Σm)×λ[H],m


for λ ∈ Parts(G), where

∏
[H],m(H ≀ Σm)×λ[H],m ⊆

∏
[H],m(G ≀ Σm)×λ[H],m ⊆ G ≀ Σ∥λ∥ as in

Subsection 2.5.
Notice that α is injective. This can be proved directly from the definition, but it turns out

that α admits a canonical retract. This retract is described in Section 9.

Definition 5.5. Let Å(G) =
⊕

n≥0 Å(G,n). By Proposition 3.5, this is a commutative graded
subring of A(G ≀ Σ).

Proposition 5.6. The total power operation takes the isomorphism class of a transitive G-set
to the isomorphism class of a transitive G ≀ Σn-set. In particular,

Pn([G/H]) = [(G/H)×n] = [(G ≀ Σn)/(H ≀ Σn)].

Proof. This follows from the isomorphism of G ≀ Σn-sets

(G/H)×n ∼= (G ≀ Σn)/(H ≀ Σn). □

Proposition 5.7. The graded subring Å(G) is the image of the injective map of graded rings
Z[Parts(G)] α

↪−→ Z[Conj(G≀Σ)] ∼= A(G≀Σ), where the degree of λ ∈ Parts(G) is ∥λ∥. In particular,
Å(G) is canonically isomorphic to the graded monoid ring Z[Parts(G)].

Proof. Keeping in mind the isomorphism of Proposition 5.6, we see that a generator λ ∈
Parts(G,n) of Z[Parts(G)] corresponds to the isomorphism class of transitive G ≀ Σn-sets

(5.8) [(G ≀ Σn)/α(λ)] = ⋆
[H],m

[(G ≀ Σm)/(H ≀ Σm)]⋆λ[H],m = ⋆
[H],m

Pm([G/H])⋆λ[H],m .

Note that the formula for the total power operation on an arbitrary sum is

(5.9) Pn

(
m∑
k=1

Xk

)
=

∑
i1+...+im=n
i1,...,im≥0

m

⋆
k=1

Pik(Xk).

It follows that [(G ≀ Σn)/α(λ)] appears as a summand in

Pn

∑
[H],m

λ[H],m · [G/H]


and hence is the isomorphism class of a submissive G ≀Σn-set. By Proposition 3.3, this demon-
strates that the image of Z[Parts(G)] ↪→ A(G ≀ Σ) is contained in Å(G).

For the reverse inclusion, note that if each of the Xk’s in (5.9) is taken to be an isomorphism
class of a transitive G-set, then each of the summands in the formula is of the form [(G≀Σn)/α(λ)]
for some λ. Thus, Z[Parts(G)] ↪→ A(G ≀ Σ) contains all the basis elements necessary for it to
contain the image of Pn : A+(G) → A(G ≀Σn) and thus the image of Pn : A(G) → A(G ≀Σn) by



ON THE IMAGE OF THE TOTAL POWER OPERATION FOR BURNSIDE RINGS 15

Corollary 12.3. This demonstrates that the image of Z[Parts(G)] ↪→ A(G ≀ Σ) contains Å(G),
which completes the proof. □

Corollary 5.10. The commutative graded ring Å(G) is canonically isomorphic to the graded
monoid ring Z[Parts(G)].

Corollary 5.11. The subgroup Å(G,n) ⊆ A(G ≀Σn) is the subgroup generated by the isomor-
phism classes of transitive G ≀ Σn-sets of the form [(G ≀ Σn)/α(λ)] for λ ∈ Parts(G,n).

Corollary 5.12. The commutative graded ring Å(G) is an N-graded polynomial ring with
generators [(G/H)×n] = Pn([G/H]) in degree n.

Proof. This is immediate from the fact that a monoid ring on a free commutative monoid is a
polynomial ring and from the correspondence between ([H], n) ∈ Parts(G,n) and [(G/H)×n] ∈
Å(G,n). □

Corollary 5.13. The ring Å(G) is the smallest subring of A(G ≀ Σ) containing Pn(A(G)) ⊆
A(G ≀ Σn) for all n.

Proof. Use Corollary 5.12 together with the fact that containing the image of Pn : A+(G) →
A(G ≀ Σn) is enough to contain the image of Pn : A(G) → A(G ≀ Σn) as in Corollary 12.3. □

Corollary 5.14. The summand Å(G,n) is the smallest subgroup of A(G ≀ Σn) containing the
image of the power operation Pn : A(G) → A(G ≀ Σn) and the image of the transfer product
⋆ : Å(G, i)⊗ Å(G, j) → A(G ≀ Σn) for all i+ j = n with i, j > 0.

6. A universal family of power operations

In this section, we provide a description of Å(G) =
⊕

n≥0 Å(G,n) as an object carrying a
universal family of power operations out of A(G).

Definition 6.1. Let (A,+) be an abelian group and R =
⊕

n≥0Rn be a commutative graded
ring. An R-valued family of power operations on A will refer to a collection of functions Pn : A→
Rn for n ≥ 0 such that P0(x) = 1 for all x ∈ A, Pn(0) = 0 for n > 0, and

Pn(x+ y) =
∑
i+j=n

Pi(x)Pj(y),

for all x, y ∈ A. We denote the collection of R-valued families of power operations on A as
Pops(A,R).

This construction assembles into a functor

Pops: Abop ×CGrRing → Set,

where CGrRing denotes the category of commutative graded rings (maps preserve the grading).

Proposition 6.2. The functor Pops is corepresentable in the first variable. That is, there is a
functor

Pow: Ab → CGrRing

with a natural bijection
Pops(A,R) ∼= CGrRing(Pow(A), R).
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Proof. This is best seen in terms of generators and relations. Let Pow(A) be the commutative
graded ring generated in degree n by elements of the form Pn(a) for each a ∈ A subject to the
relations P0(a) = 1, Pn(0) = 0 for n > 0, and

Pn(x+ y) =
∑
i+j=n

Pi(x)Pj(y).

By construction, we have a natural isomorphism Pops(A,R) ∼= CGrRing(Pow(A), R). □

Corollary 6.3. If f : A→ B is a surjective homomorphism of abelian groups, the induced map
Pow(f) : Pow(A) → Pow(B) is surjective.

Proof. The map Pow(f) surjects onto the generators of Pow(B) in the above description. □

Let R be a commutative graded ring and let R̂ =
∏
n≥0Rn denote the completion of R

at the system of ideals R≥n for n ∈ N. We refer to R̂ as the formal completion of R. The
formal completion R̂ inherits a ring structure from R. The addition is component wise, and the
multiplication is given by

(rs)n =
∑
i+j=n
i,j≥0

risj .

This is motivated by identifying r ∈ R̂ with the infinite sum
∑
n≥0 rn. The units of the formal

completion are exactly those r ∈ R̂ such that r0 is a unit in R0. The corresponding inversion
formula for elements of this form is identical to the inversion formula for formal power series. A
unit is called strict when r0 = 1. Let R̂s denote the group of strict units i.e. the group

R̂s =
{
r ∈ R̂ | r0 = 1

}
.

Proposition 6.4. The functor Pops(A,R) is representable in the second variable by the group
of strict units in the formal completion of R. That is, there is a natural bijection

Pops(A,R) ∼= Ab(A, R̂s).

Proof. For some R-valued family of power operations on A and each a ∈ A, the sequence
(Pn(a))n≥0 ∈ R̂ is a strict unit. The axioms of the power operations exactly correspond to this
being a homomorphism A→ R̂s. Thus, Pops(A,R) ∼= Ab(A, R̂s). □

Corollary 6.5. Any graded subring of A(G≀Σ) containing the image of Pn : A+(G) → A(G≀Σn)
for all n automatically contains the image of image of Pn : A(G) → A(G ≀ Σn) for all n.

Proof. There is a monoid homomorphism

A+(G) → ̂A(G ≀ Σ)
s
: [X] 7→ (Pn([X])n≥0

and any monoid homomorphism from A+(G) to a group extends to a group homomorphism
from A(G). □

Recall from Section 4 that P (X) denotes the set of partitions decorated by X, which becomes
a free commutative monoid under formal addition of decorated partitions.

Corollary 6.6. Let X be a set and let Z{X} be the free abelian group on X. Then there are
canonical isomorphisms of commutative graded rings

Pow(Z{X}) ∼= Z[(x, n) | x ∈ X, n > 0, deg(x, n) = n] ∼= Z[P (X)].
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Proof. The second isomorphism, between the polynomial ring and the monoid ring, follows from
the definition of P (X) as a free commutative monoid. For the first isomorphism, we see that
Pow(Z{X}) and the polynomial ring Z[(x, n)] have the same universal property since they both
represent functions from X into the group of strict units. Explicitly, a map f : Z[(x, n)] → R

is uniquely determined by elements f(x, n) ∈ Rn for x ∈ X and n > 0, which is the data of a
function X → R̂s. □

Corollary 6.7. There is a canonical isomorphism of commutative graded rings

Pow(A(G)) ∼= Å(G).

Proof. Proposition 5.7 shows that Å(G) is canonically isomorphic to the graded monoid ring
Z[Parts(G)]. The corollary then follows immediately from Corollary 6.6 with X = Conj(G). □

Definition 6.8. Given an abelian group homomorphism F : A(H) → A(G), let

F̊ : Å(H) → Å(G)

denote the map induced by Corollary 6.7 and Pow(F ).

7. Burnside rings and representation rings

Let RU(G) be the complex representation ring of G and let RU(G ≀Σ) =
⊕

n≥0RU(G ≀Σn).
This object was thoroughly studied by Zelevinsky in [Zel81].

There is a commutative graded ring structure on RU(G ≀ Σ) by making use of a trans-
fer multiplication defined similarly to ⋆. The RU(G ≀ Σ)-valued family of power operations
(Pn : RU(G) → RU(G ≀ Σn))n≥0 given by Pn([V ]) = [V ⊗n] induces a map of commutative
graded rings Pow(RU(G)) → RU(G ≀Σ). We will show that this map is an isomorphism. There
are at least two ways to do this. One is to prove results similar to Section 5, replacing the set
of isomorphism classes of transitive G-sets with the set of isomorphism classes of irreducible
G-representations. Another is to make use of the “transfer ideal.” For completeness, we will
take the second approach because it also provides another way to prove Corollary 6.7. This
result follows easily from the work of Zelevinsky, but we include a complete proof with no claim
to originality.

Let (R, ⋆) be a commutative N-graded ring. Let In ⊆ Rn denote the image of the sum of the
multiplication maps from lower degrees

⋆ :
⊕
i+j=n
i,j>0

Ri ⊗Rj → Rn.

Equivalently, let I = (R>0)
⋆2 denote the square of the irrelevant ideal R>0 =

⊕
n>0Rn ⊆ R

and let In be the n-th graded piece of I.

Proposition 7.1. The canonical map of commutative graded rings

Pow(RU(G)) → RU(G ≀ Σ)

is an isomorphism.

Proof. We prove this by induction on the degree.
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We have a map of exact sequences⊕
i+j=n
i,j>0

Pow(RU(G))i ⊗ Pow(RU(G))j Pow(RU(G))n Pow(RU(G))n/In 0

⊕
i+j=n
i,j>0

RU(G ≀ Σi)⊗RU(G ≀ Σj) RU(G ≀ Σn) RU(G ≀ Σn)/In 0.

∼= ∼=

By induction on n, the left vertical map is an isomorphism. For the right vertical map, Corol-
lary 6.6 implies that Pow(RU(G))n/In ∼= RU(G) and [Zel81, Lemma 1.7 and Section 7.2] implies
that RU(G ≀Σn)/In ∼= RU(G). By construction, the right map sends Pn(V ) to [V ⊗n], which is
an isomorphism. This implies that the middle map is surjective, but since both abelian groups
are free of the same rank, the middle map is an isomorphism. □

At this stage, we can give a generalization of the following well-known result [Ful97, Section
7.3]. Consider the composite of ring maps

Å(e, n) → A(Σn) → RU(Σn),

where RU(Σn) is the complex representation ring of Σn and A(Σn) → RU(Σn) is the lineariza-
tion map taking a finite Σn-set to the associated permutation representation. This map turns
out to be an isomorphism. That is, the linearization map A(Σn) → RU(Σn) splits as a map of
commutative rings.

The ring Å(e, n) has been studied by others. In particular, in [OTY16], Oda, Takegahara,
and Yoshida refer to it as the partial Burnside ring relative to the Young subgroups of the
symmetric group. In this sense, the subgroups H ⊆ G ≀ Σn such that (G ≀ Σn)/H is submissive
are a generalization of the notion of a Young subgroup of Σn to G ≀ Σn.

Corollary 7.2. Assume the linearization map A(G) → RU(G) is surjective (resp. an isomor-
phism), then the induced map Å(G,n) → RU(G ≀ Σn) is surjective (resp. an isomorphism). In
particular, the composites

Å(e, n) → A(Σn) → RU(Σn)

and
Å(Σ2, n) → A(Σ2 ≀ Σn) → RU(Σ2 ≀ Σn)

are isomorphisms.

Proof. This follows immediately from Corollary 6.3 together with the fact that the linearization
maps A(e) → RU(e) and A(Σ2) → RU(Σ2) are isomorphisms. □

8. Parks(G)

We seek to produce a kind of character map for Å(G) analogous to the character map A(G) →
Marks(G). In this section we construct and study the target ring.

Definition 8.1. For a finite group G and a commutative ring R, let Parks(G,R) denote the
abelian group of finite support functions Parts(G) → R. We give Parks(G,R) an N-grading
by declaring the homogeneous elements of degree n to be those functions supported on par-
titions of size n. We identify the graded pieces with the abelian groups Parks(G,n,R) =
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Fun(Parts(G,n), R) so that Parks(G,R) ∼=
⊕

n Parks(G,n,R). When R is omitted, it is as-
sumed to be Z.

The graded ring Parks(G,R) has an R-linear basis given by the indicator functions

1λ : κ 7→

{
1, λ = κ

0, otherwise

of homogeneous degree ∥λ∥ for λ ∈ Parts(G).

Proposition 8.2. Define a graded multiplication ⋆ : Parks(G,R)⊗Parks(G,R) → Parks(G,R)

given by

(f ⋆ g)(µ) =
∑

κ+λ=µ

µ!

κ!λ!
f(κ)g(λ)

for µ ∈ Parts(G). This gives Parks(G,R) the structure of a commutative graded ring.

Proof. The commutativity and bilinearity of ⋆ are clear. That ⋆ is graded follows from the fact
that the size of partitions is additive. The ⋆-unit is the indicator function of the empty partition
0 ∈ Parts(G, 0). To see that ⋆ is associative, note that

(f ⋆ (g ⋆ h))(λ) =
∑

γ+κ=λ

λ!

γ!κ!
f(γ)(g ⋆ h)(κ)

=
∑

γ+κ=λ

λ!

γ!κ!
f(γ)

∑
δ+ε=κ

κ!

δ!ε!
g(δ)h(ε)

=
∑

γ+δ+ε=λ

λ!

γ!δ!ε!
f(γ)g(δ)h(ε)

and that ((f ⋆ g) ⋆ h) expands to this same expression. □

Note that the graded pieces Parks(G,n,R) are commutative rings, but this structure is not
induced by the ⋆-product.

Next we produce a Parks(G,R)-valued family of power operations

(Pn : Marks(G) → Parks(G,n))n≥0.

Proposition 8.3. The maps Pn : Marks(G) → Parks(G,n) given by

Pn(f)(λ) =
∏

[H],m

f([H])λ[H],m

are a family of power operations.

Proof. It is clear that P0 = 1 and that Pn(0) = 0 for n > 0. Thus, it suffices to check that

Pn(f + g)(µ) =
∏

[H],m

((f + g)([H]))µ[H],m

=
∏

[H],m

(f([H]) + g([H]))µ[H],m

=
∏

[H],m

 ∑
κ[H],m+λ[H],m=µ[H],m

µ[H],m!

κ[H],m!λ[H],m!
f([H])κ[H],mg([H])λ[H],m
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=
∑

κ+λ=µ

µ!

κ!λ!
P∥κ∥(f)(κ)P∥λ∥(g)(λ)

=
∑
i+j=n

∑
κ+λ=µ

∥κ∥=i, ∥λ∥=j

µ!

κ!λ!
Pi(f)(κ)Pj(g)(λ)

=
∑
i+j=n

Pi(f) ⋆ Pj(g). □

Corollary 8.4. The maps Pn : A(G) → Parks(G,n) given by

Pn(X)(λ) =
∏

[H],m

χ(X)([H])λ[H],m

are a family of power operations.

Proof. This follows from the fact that this formula is the formula of Proposition 8.3 precomposed
with the marks homomorphism. □

We can use this family of power operations along with Proposition 6.2 to produce a map
Å(G) → Parks(G).

Definition 8.5. Let
χ = χG : Å(G) → Parks(G)

be the map obtained by composing the isomorphism Å(G) ∼= Pow(A(G)) of Corollary 6.7 and
the map Pow(A(G)) → Parks(G) induced by Corollary 8.4 and Proposition 6.2. We call this the
character map or parks homomorphism in analogy to the terminology for the map χ : A(G) →
Marks(G).

Alternatively, χ : Å(G) → Parks(G) is the composite of the isomorphism Å(G) ∼= Pow(A(G)),
Pow(χ) : Pow(A(G)) → Pow(Marks(G)), and the map Pow(Marks(G)) → Parks(G) induced by
Proposition 8.3 and Proposition 6.2.

On the polynomial generators of Corollary 5.12, the parks homomorphism is given by

χ : Pn([G/H]) ∈ Å(G,n) 7→

λ 7→
∏

[K],m

χ([G/H])([K])λ[K],m

 ∈ Parks(G,n)

for a subgroup H ⊆ G and n ≥ 0.
Although the parks homomorphism and the marks homomorphism Å(G) → A(G ≀ Σ) →

Marks(G ≀ Σ) are written with the same symbol, it is usually easy to distinguish them in con-
text; the marks homomorphism is evaluated at conjugacy classes of subgroups while the parks
homomorphism is evaluated at decorated partitions.

The parks homomorphism χ : Å(G) → Parks(G) will be studied more thoroughly in Sec-
tion 13. In particular, we will show it is closely related to the marks homomorphism χ : A(G ≀
Σ) → Marks(G ≀ Σ).

9. The retract β

Recall the augmented monoid homomorphism α : Parts(G) → Conj(G ≀ Σ) as described in
Section 5. In this section, we produce an augmented monoid retract

β : Conj(G ≀ Σ) → Parts(G)
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of α.
Consider a subgroup H ⊆ G ≀ Σn. Choose a set [n] of size n and identify Σn with the group

Σ[n] = Aut([n]) of bijections of [n] as in Subsection 2.5. For i, j ∈ [n], define

Hij = {ḡj | (ḡ, σ) ∈ H, σ : i 7→ j} ⊆ G.

Notice that these sets are subsets of G that satisfy compositional relations similar to that of a
groupoid:

e ∈ Hii, HjkHij ⊆ Hik, and H−1
ij = Hji.

To see the middle property, choose (ḡ, σ), (h̄, τ) ∈ H such that σ : i 7→ j and τ : j 7→ k. Then,
the multiplication

(h̄, τ)(ḡ, σ) = (h̄τ ḡ, τσ)

gives us
(h̄τ ḡ)k = h̄kḡτ−1(k) = h̄kḡj .

so that HjkHij ⊆ Hik. The proofs of the other two properties are similar. It follows that Hii is
a subgroup of G.

Notice that H has a left action on [n] via the quotient G ≀ Σn ↠ Σn. Accordingly, we write
H\[n] (read H under [n]) for the collection of orbits of [n] under the left action of H. Elements
of H\[n] are of the form Hi for i ∈ [n]. The set Hij is nonempty if and only if Hi = Hj.

Definition 9.1. For a subgroup H ⊆ G ≀Σn, choose S ⊆ [n] containing a unique representative
of each orbit in H\[n] (equivalently choose a section of the quotient map [n] → H\[n]). Then,
define

β([H]) =
∑
i∈S

([Hii], |Hi|).

Once we show that this sum is independent of the choice of S, we may write

β([H]) =
∑

Hi∈H\[n]

([Hii], |Hi|) ∈ Parts(G)

without reference to the choice S.

Proposition 9.2. The formula above is a well-defined homomorphism

β : Conj(G ≀ Σ) → Parts(G)

of augmented monoids, and β is a retract of α.

Proof. We begin by showing this definition is independent of the choice of S. To see this, note
that if i and j are in the same H-orbit, then we may choose h ∈ Hij so that hHiih

−1 = Hjj .
The fact that this definition is independent of the chosen representative H of the conjugacy

class [H] follows from the behavior of the sets Hij under conjugation by elements of H ⊆ G ≀Σn.
First, note the following formula for conjugation in the wreath product:

(h̄, τ)(ḡ,σ) = (ḡ, σ)−1(h̄, τ)(ḡ, σ) = (σ−1(ḡ −1h̄τ ḡ), σ−1τσ).

If we write
h̄(ḡ,σ) for σ−1(ḡ −1h̄τ ḡ)

then the conjugation formula is much simpler:

(h̄, τ)(ḡ,σ) = (h̄(ḡ,σ), τσ).
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This is justified by identifying G×n with the normal subgroup G×n ⊴ G ≀ Σn and considering
the conjugation action of G ≀ Σn on this normal subgroup. Additionally, note that

h̄(ḡ,σ)i = ḡ−1
σ(i)h̄σ(i)ḡτ−1(σ(i))

for i ∈ [n].
With this in mind, consider (ḡ, σ) ∈ G ≀ Σn and compute that

H(ḡ,σ)
ij = {h̄j | (h̄, τ) ∈ H(ḡ,σ), τ : i 7→ j}

= {h̄j | (h̄, τ)(ḡ,σ)
−1

∈ H, τ : i 7→ j}

= {h̄(ḡ,σ)j | (h̄, τ) ∈ H, τσ : i 7→ j}

= {ḡ−1
σ(j)h̄σ(j)ḡτ−1(σ(j)) | (h̄, τ) ∈ H, τ : σ(i) 7→ σ(j)}

= ḡ−1
σ(j){h̄σ(j) | (h̄, τ) ∈ H, τ : σ(i) 7→ σ(j)}ḡσ(i)

= ḡ−1
σ(j)Hσ(i)σ(j)ḡσ(i).

Now, the fact that the definition of β is independent of the chosen representative H of [H]

follows from the fact that
H(ḡ,σ)

ii = ḡ−1
σ(i)Hσ(i)σ(i)ḡσ(i)

and that if S is a set of orbit representatives for H\[n], then σ−1(S) is a set of orbit represen-
tatives for H(ḡ,σ)\[n]. Thus, we have shown that β is well-defined.

The fact that β preserves the augmentation i.e. that ∥β([H ⊆ G ≀Σn])∥ = n follows from the
fact that ∑

Hi∈H\[n]

|Hi| = n.

To see that β is a monoid homomorphism, consider [H] ∈ Conj(G ≀Σi) and [K] ∈ Conj(G ≀Σj)
where n = i+ j. Recall that [H] ⋆ [K] = [H ×K] ∈ Conj(G ≀Σn). We may choose [n] = [i]⨿ [j]

so that (H ×K)\[n] ∼= (H\[i])⨿ (K\[j]). Additionally, we may recognize that

(H ×K)kℓ =


Hkℓ, k, ℓ ∈ [i]

Kkℓ, k, ℓ ∈ [j]

∅, otherwise

for k, ℓ ∈ [n]. Then,

β([H] ⋆ [K]) =
∑

(H×K)k∈(H×K)\[n]

([(H ×K)kk], |(H ×K)k|)

=
∑

Hk∈H\[i]

([Hkk], |Hk|) +
∑

Kℓ∈K\[j]

([Kℓℓ], |Kℓ|)

= β([H]) + β([K]).

To see that β is a retract of α, consider some λ ∈ Parts(G,n). As described in Section 5,
α(λ) is the conjugacy class

α(λ) = ⋆
[H],m

[H ≀ Σm]⋆λ[H],m =

 ∏
[H],m

(H ≀ Σm)×λ[H],m

.
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For the sake of this proof, let [n] be the set∐
[H],m

[λ[H],m]× [m] = {([H],m, i, j) | [H] ∈ Conj(G),m ∈ N+, i ∈ [λ[H],m], j ∈ [m]}.

This determines the embedding
∏

[H],m(G ≀Σm)×λ[H],m ⊆ G ≀Σn as in Subsection 2.5. Let P be
the product subgroup

P =
∏

[H],m

(H ≀ Σm)×λ[H],m ⊆
∏

[H],m

(G ≀ Σm)×λ[H],m ⊆ G ≀ Σn

so that α(λ) = [P ]. Then, the P -orbits of [n] are the sets {([H],m, i)} × [m] ⊆ [n] for [H] ∈
Conj(G), m ∈ N+, and i ∈ [λ[H],m] For k = ([H],m, i, j) a representative of such an orbit, the
associated subgroup Pkk is H. Thus, it follows that

β(α(λ)) = β([P ]) =
∑

P ([H],m,i,j)∈P\[n]

([Pkk], |Pk|)

=
∑

[H],m,i
i∈[λ[H],m]

([H],m) =
∑
[H],m

λ[H],m · ([H],m) = λ,

where k in the first sum denotes ([H],m, i, j). This completes the proof. □

Proposition 9.3. Given H ⊆ G ≀ Σn, there is a unique representative H ′ ∈ αβ([H]) such that
H ⊆ H ′.

Note that we only rely on the existence of this representative in the remainder of the docu-
ment.

Proof. First we show existence. Let H ′ denote the subgroup

H ′ = {(ḡ, σ) ∈ G ≀ Σn | ḡσ(i) ∈ Hiσ(i) ∀i ∈ [n]} ⊆ G ≀ Σn.

The fact that this is a subgroup follows from the groupoid-like properties satisfied by the Hij ’s,
and the fact that H ⊆ H ′ follows directly from the definition of the Hij ’s. It also follows that
H ′
ij = Hij for any i, j ∈ [n] and that the orbit H ′i equals the orbit Hi for i ∈ [n]. Accordingly

H ′\[n] ∼= H\[n].
Choose a section s : H\[n] → [n] of the quotient q : [n] → H\[n] and choose any ḡ ∈ G×n ⊆

G ≀ Σn so that ḡi ∈ Hsq(i)i. Then, observe that

H ḡ
ij = ḡ−1

j Hij ḡi = Hsq(i)sq(j) =

{
Hsq(i)sq(i), if Hi = Hj

∅, otherwise.

Let S = sq([n]) be the collection of representatives of the orbits H\[n] determined by the section
s. It follows that

H ′ḡ =
∏
i∈S

Hii ≀ ΣHi ⊆ G ≀ Σn,

where ΣHi denotes the symmetric group on the orbit Hi ⊆ [n] and using the embedding
∏
i∈S G≀

ΣHi ⊆ G ≀Σn arising from the bijection
∐
i∈S Hi

∼= [n]. This establishes that [H ′] = αβ([H]) =

αβ([H ′]).
To see that H ′ is unique, recognize that any representative H ′′ ∈ αβ([H]) necessarily has the

form
H ′′ = {(ḡ, σ) ∈ G ≀ Σn | ḡσ(i) ∈ H ′′

iσ(i) ∀i ∈ [n]}
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because H ′ has this form and H ′′ is conjugate to H ′. Thus, in order for H ′′ to contain H, it must
be that Hij ⊆ H ′′

ij for all i, j ∈ [n] and thus that Hij = H ′′
ij for all i, j, so that H ′ = H ′′. □

For completeness, we describe a few more ways to think about the map β. Using the notation
established above, for i ∈ S and H ⊆ G ≀ Σn, we have

StabH(i) ⊆ StabG≀Σn
(i) ∼= G ≀ Σ{i} ×G ≀ Σ[n]−{i} ∼= G×G ≀ Σn−1,

where [n]−{i} denotes the set difference. Then Hi = π{i}(StabH(i)) ⊆ G is another description
of Hii, where π{i} denotes projection onto G ≀ Σ{i} ∼= G.

The data of a Conj(G)-decorated partition of size n is equivalent to an equivalence class
of pairs (X, f : [n] ↠ X/G), where X is a finite right G-set, X/G is the set of right orbits
whose elements are of the form xG for x ∈ X, and f is a surjection (of sets). The associated
Conj(G)-decorated partition of size n is given by

(X, f)⇝
∑

xG∈X/G

([StabG(x)], |f−1(xG)|).

Equivalently,

λ[H],m =
∣∣{xG ∈ X/G : |f−1(xG)| = m and [StabG(x)] = [H]

}∣∣.
To construct the (X, f) pair corresponding to β([H]) for H ⊆ G ≀ Σn, recall that G ≀ Σn ∼=
AutG([n]×G) where [n]×G is regarded as a right G-set by multiplication in the second factor.
Then, [n]×G is a (H,G)-biset, and the (X, f) pair corresponding to β([H]) is

β([H]) ⇝

(
H\([n]×G), [n] ∼= ([n]×G)/G↠ H\([n]×G)/G

)
.

Finally, note that the augmented monoid homomorphism β induces a map of graded monoid
rings Z[Conj(G ≀ Σ)] → Z[Parks(G)]. Under the identifications Z[Conj(G ≀ Σ)] ∼= A(G ≀ Σ) and
Z[Parks(G)] ∼= Å(G), this corresponds to a graded ring map r : A(G ≀ Σ) → Å(G).

Definition 9.4. Let r : A(G ≀ Σ) → Å(G) be the commutative graded ring homomorphism
defined on additive generators by

r : A(G ≀ Σ) → Å(G) : [(G ≀ Σn)/H] 7→ [(G ≀ Σn)/αβ([H])] = [(G ≀ Σn)/H ′],

where H ′ ∈ αβ([H]). Equivalently,

r : [(G ≀ Σn)/H] 7→ ⋆
[K],m

Pm([G/K])⋆β([H])[K],m = ⋆
Hi∈H\[n]

P|Hi|([G/Hii]).

Corollary 9.5. The map r : A(G ≀ Σ) → Å(G) is a retract to the inclusion Å(G) ↪→ A(G ≀ Σ).

10. Fixed points of submissive sets

In this section, we study the fixed point sets of G ≀Σn-sets of the form X×n for a finite G-set
X, and more generally of submissive G ≀ Σn-sets, for any subgroup H ⊆ G ≀ Σn. These fixed
point sets are closed related to the map β of the previous section, and we continue to use the
notation of that section.

In particular, any subgroup H ⊆ G ≀Σn has a left action on [n] via the quotient G ≀Σn ↠ Σn.
Accordingly, we write H\[n] (read H under [n]) for the collection of orbits of [n] under the left
action of H. Elements of H\[n] are of the form Hi for i ∈ [n]. Further, we make use of the
previously defined sets Hij for i, j ∈ [n].
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As usual, [n] is the disjoint union of its H-orbits. Explicitly,

[n] ∼=
∐

Hi∈H\[n]

Hi.

We write X×Hi =
∏
j∈HiX

∼= X×|Hi| and ΣHi for the group of bijections of the set Hi ⊆ [n].
With this notation, there is a canonical isomorphism∏

Hi∈H\[n]

X×Hi ∼= X×[n] = X×n and embedding
∏

Hi∈H\[n]

ΣHi ⊆ Σ[n] = Σn.

Then, it follows that
H ⊆

∏
Hi∈H\[n]

G ≀ ΣHi ⊆ G ≀ Σn.

Further, let
πHj :

∏
Hi∈H\[n]

G ≀ ΣHi → G ≀ ΣHj

denote projection onto the Hj factor for Hj ∈ H\[n].
There are three main propositions that we use to characterize the fixed point sets of submissive

sets. The other interesting facts are corollaries.

Proposition 10.1. Let X be a finite G-set and H ⊆ G ≀ Σn. Then, under the notation above,
there is a bijection

(X×n)H ∼=
∏

Hi∈H\[n]

(X×Hi)πHiH .

Proof. This follows immediately from the fact that if K is a subgroup of a product group G×H
and X and Y are G and H-sets respectively, then

(X × Y )K ∼= Xπ1K × Y π2K

where π1 and π2 denote the projections onto G and H respectively. □

Proposition 10.2. Let X ↪→ Y ×n be a submissive G ≀ Σn-set and H ⊆ G ≀ Σn. Then,

XH = XH′
,

where H ′ is the unique representative of the conjugacy class αβ([H]) such that H ⊆ H ′ as in
Proposition 9.3.

Proof. It suffice to prove the claim for a submissive G ≀ Σn-set X ⊆ Y ×n. The idea is that,
because the elements of X are n-tuples, fixed points can be checked ‘component-wise.’ That is,

XH = {x ∈ X | (ḡ, σ)x = x ∀(ḡ, σ) ∈ H}
= {x ∈ X | ḡσ(i)xi = xσ(i) ∀(ḡ, σ) ∈ H ∀i ∈ [n]}
= {x ∈ X | gxi = xj ∀i, j ∈ [n] ∀g ∈ Hij}.

where the sets Hij are defined as in the previous section. From the proof of Proposition 9.3,
H ′
ij = Hij for all i, j. The result follows. □

Corollary 10.3. If X is submissive and H ′ is any representative of αβ([H]), then XH ∼= XH′
.

We say that a subgroup H ⊆ G ≀ Σn is a transitive if the induced action of H on [n] is
transitive. By construction, the subgroups πHiH ⊆ G ≀ ΣHi of Proposition 10.1 are transitive.
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Proposition 10.4. Let X be a finite G-set, H ⊆ G ≀ Σn be a transitive subgroup, and i ∈ [n].
Then, the projection πi : X×n → X induces a bijection

(X×n)H ∼= XHii .

Proof. As in the proof of the previous proposition,

(X×n)H = {x ∈ X×n | gxj = xk ∀j, k ∈ [n] ∀g ∈ Hjk}.

With this in mind, it is clear that the projection πi : (X
×n)H → X lands in the desired fixed

points XHii . To see that this is a bijection, choose gj ∈ Hij for each j ∈ [n], which is possible
since H is transitive. Define the inverse of the projection by x ∈ XHii 7→ y(x) ∈ X×n where
y(x)j is defined to be gjx. This lands in the H-fixed points as desired because for h ∈ Hjk,

hy(x)j = hgjx = gkg
−1
k hgjx = gkx = y(x)k,

since g−1
k hgj ∈ Hii and Hii fixes x. □

Corollary 10.5. Let X be a finite G-set and H ⊆ G ≀ Σn. There is a bijection

(X×n)H ∼=
∏

Hi∈H\[n]

XHii .

Proof. This follows from Proposition 10.1 and Proposition 10.4 together with the fact that
(πHiH)ii = Hii. □

Corollary 10.6. Let X be a finite G-set and λ ∈ Parts(G,n). Choose a representative H ∈
α(λ). Then,

|(X×n)H | =
∏

[K],m

|XK |λ[K],m .

Proof. This follows from Corollary 10.5 and Definition 5.4 which defines α. □

11. Decorated compositions

Much like it is often convenient to choose representatives of conjugacy classes of subgroups, it
is often useful to choose finer objects representing partitions. This is the notion a composition,
which refers to an indexed or ordered formal sum of integers.

Accordingly, a formal sum in X × N+ indexed by a finite set I is called an I-indexed X-
decorated composition, and the collection of such compositions is denoted C(I,X) = (X×N+)

I .
For c ∈ C(I,X) and i ∈ I, the i-th pair in c is denoted ci and is called the i-th part of c. We
denote the components of these parts as ci = (c♭i , c

♯
i) so that c♭i denotes the decoration and c♯i

denotes the integer component. If c ∈ C(I, ∗) is an integer composition, we may write ci for c♯i
since the decoration contributes no information.

There is a function
u : C(I,X) → P (X) : c 7→ uc =

∑
i∈I

ci

that un-indexes a composition by taking its formal sum. Equivalently,

uc : x,m 7→ |{i ∈ I | ci = (x,m)}|.

We denote the preimage under u of a partition λ by C(I, λ) and we call the elements of this set
I-indexed compositions of λ. The set C(I, λ) is nonempty if and only if |I| = |λ|. Compositions
are generally denoted by lowercase Latin letters toward the beginning of the alphabet, but
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sometimes notation will be chosen to match corresponding partitions e.g. we may choose ℓ for
an element of C(I, λ). Certain expressions involving partitions are related to certain expressions
related to compositions. In particular, if λ ∈ P (X), ℓ ∈ C(I, λ), and f : X × N+ → M is a
function into a commutative monoid, then

(11.1)

∑
x,m

λx,m · f(x,m) =
∑
i

f(ℓi) or
∏
x,m

f(x,m)λx,m =
∏
i

f(ℓi)

or ⋆
x,m

f(x,m)⋆λx,m =⋆
i

f(ℓi)

depending on which symbol is used for the operation of M .
We extend the operations of partitions to compositions such that operations applied to com-

positions correspond to operations applied to the underlying partitions. Addition of partitions
corresponds to a concatenation map +: C(I,X)× C(J,X) → C(I ⨿ J,X) defined by

(c+ d)i =

{
ci, i ∈ I

di, i ∈ J,

for c ∈ C(I,X) and d ∈ C(J,X). For J ⊆ I, there is a restriction map C(I,X) → C(J,X) : c 7→
c|J which remembers only the i-th parts of c for i ∈ J . This interacts with concatenation so
that c = c|I + c|J for c ∈ C(I ⨿ J,X). Consequently the concatenation map is a bijection.
Concatenation of compositions corresponds to addition of partitions in the sense that u(c+d) =
uc + ud. Accordingly, for λ, µ ∈ P (X), the concatenation map restricts to a map C(I, λ) ×
C(J, µ) → C(I⨿J, λ+µ) but this is not usually bijection, even when the domain and codomain
are nonempty.

We define the length and size of a composition c ∈ C(I,X) by

|c| = |I| = |uc| and ∥c∥ =
∑
i

c♯i = ∥uc∥

and the factorial and multifactorial by

c! = (uc)! and ((c))! =
∏
i

c♯i ! = ((uc))!.

Given a function f : X → Y , there is a pushforward map f∗ : C(I,X) → C(I, Y ) which applies
f to the decorations i.e. f∗ci = (f(c♭i), c

♯
i). This has the property that f∗uc = uf∗c. The

pushforward along the map X → ∗ is the un-decoration map C(I,X) → C(I, ∗) : c 7→ c♯.
Similarly, we denote the un-decoration map P (X) → P (∗) : λ 7→ λ♯ so that

λ♯ : m 7→
∑
x

λx,m.

When we do not care about the particular set which indexes compositions, we write C(k,X)

for C([k], X) where k ∈ N. Similarly, we write C(λ) for C(|λ|, λ) and call the elements of this set
compositions of λ. Sometimes, it is useful to refer to the collection of X-decorated compositions
of any length. We denote this set by C(X) =

∐
k C(k,X). Concatenation gives C(X) the

structure of a monoid, using the identifications [i]⨿ [j] ∼= [i+j] described in Subsection 2.5. This
monoid is not commutative when X is nonempty, but the un-indexing map is a homomorphism
u : C(X) → P (X) witnessing P (X) as the abelianization of C(X). The map u : C(X) → P (X)

is a homomorphism of augmented monoids when C(X) is augmented by the size map (as opposed
to the augmentation c ∈ C(k,X) 7→ k given by the disjoint union decomposition). For c ∈ C(X)
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and f : X ×N+ →M a function into a commutative monoid, the only reasonable interpretation
of ∑

i

f(ci) is
∑
i∈[|c|]

f(ci),

where [|c|] is the set of size |c|, so we usually opt to elide the domains of such sums (or products
or ⋆-products). We may identify X × N+ with C(1, X) so that for c ∈ C(X), x ∈ X, and
m ∈ N+, c+ (x,m) denotes the composition obtained by appending the part (x,m) to the end
of c. If X = ∗, we write c+m for the integer composition c with m appended to the end.

It is often useful to choose a composition for a specific partition. Given a partition λ, we
denote such an unspecified choice by c(λ) ∈ C(λ). The particular values c(λ)i are not defined,
but regardless certain expressions in terms of them are still defined. For example, if f : X×N+ →
M is any function into a commutative monoid, then∑

i

f(c(λ)i) =
∑
x,m

λx,m · f(x,m) or
∏
i

f(c(λ)i) =
∏
x,m

f(x,m)λx,m

or ⋆
i

f(c(λ)i) =⋆
x,m

f(x,m)⋆λx,m

is well-defined depending on which symbol is used for the operation of M .
Notice that C(I,X) has an action of ΣI = Aut(I). For c ∈ C(I,X), we denote the associated

stabilizer by

Σc = {σ | σc = c} ⊆ ΣI .

Then, c! = |Σc|. The collection C(λ) is the Σ|λ|-orbit of c(λ) ∈ C(|λ|). Accordingly, we find
that

|λ|!
λ!

= [Σ|λ| : Σc(λ)] = |C(λ)|.

The canonical embedding ΣI×ΣJ ⊆ ΣI⨿J gives a relationship between the stabilizers: Σc×Σd ⊆
Σc+d. This witnesses that

(c+ d)!

c!d!
= [Σc+d : Σc × Σd].

As mentioned, the pushforward along a function f : X → Y does not generally preserve the
factorial, but this failure has combinatorial meaning: Σc ⊆ Σf∗c, and

f∗λ!

λ!
=

(f∗λ)!

λ!
= [Σf∗c : Σc].

12. Examples of partition and composition notation

We dedicate this section to example applications of partitions and compositions. The results
in this section are either reformulations of existing results into new language or are elementary
results that can be efficiently stated in terms of partitions and compositions. We invite the
reader to use this section to internalize the notation of the previous section, as it will be heavily
used in the remainder of the paper.
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The multinomial theorem. The multinomial theorem(
m∑
k=1

xk

)n
=

∑
i1+···+im=n
i1,...,im≥0

n!∏
k ik!

∏
k

xikk

can be expressed in terms of integer compositions. An equivalent formulation is(∑
i∈I

xi

)n
=

∑
∥c∥=n

J⊆I, c∈C(J,∗)

n!

((c))!

∏
i∈J

xcii =
∑

∥c∥=n
J⊆I, c∈C(J,∗)

n!

((c))!
xc,

where xc denotes the quantity
∏
i∈J x

ci
i . Another equivalent formulation involves integer parti-

tions: (∑
i∈I

xi

)n
=

∑
∥λ∥=n
λ∈P (∗)

n!

((λ))!

∑
ℓ∈C(J,λ)

J⊆I, |J|=|λ|

xℓ.

The quantities n!/((λ))! = ∥λ∥!/((λ))! are called the multinomial coefficients and are integral. The
necessity of summing over subsets J ⊆ I is an artifact of our definition of integer compositions
having positive parts. While other choices may result in more elegant formulas, we choose this
formulation to avoid introducing too many variants of compositions and partitions.

The multinomial theorem for power operations. The notion of R-valued power operations on
A for R a commutative graded ring and A an abelian group as defined in Section 6 has three
axioms: P0(x) = 1, Pn(0) = 0 for n > 0 and

Pn(x+ y) =
∑
i+j=n

Pi(x)Pj(y).

From this, one can conclude a version of the multinomial theorem without the coefficients:

Pn

(∑
i∈I

xi

)
=

∑
∥c∥=n

J⊆I, c∈C(J,∗)

∏
i∈J

Pci(xi) =
∑

∥c∥=n
J⊆I, c∈C(J,∗)

Pc(x) =
∑

∥λ∥=n, ℓ∈C(J,λ)
λ∈P (∗), J⊆I, |J|=|λ|

Pℓ(x),

where Pc(x) denotes
∏
i∈J Pci(xi). This is essentially a rewriting of (5.9) in the language of

partitions and compositions.
The proof of this formula is the same as the inductive proof of the classical multinomial

theorem. This single formula implies each of the other axioms: P0(x) = 1 follows from n = 0

and |I| = 1, Pn(0) = 0 for n > 0 follows from |I| = 0, and Pn(x + y) =
∑
i+j=n Pi(x)Pj(y)

follows from |I| = 2. Thus, taking this as the only axiom provides an equivalent definition for
power operations.

Power operations of additive inverses. The language of partitions allows an elegant formula for
power operations applied to additive inverses. Let P be an R-valued family of power operations
on A. For an integer partition λ ∈ P (∗) and x ∈ A, let Pλ(x) =

∏
k Pk(x)

λk ∈ R∥λ∥. Similarly,
for an integer composition c ∈ C(∗), let Pc(x) =

∏
i Pci(x) = Puc(x). Note that this agrees with

the notation Pc(x) of the previous subsection when (xi)i∈J is a constant family.

Proposition 12.1.

Pn(−x) =
∑

∥λ∥=n
λ∈P (∗)

(−1)|λ|
|λ|!
λ!
Pλ(x).
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Proof. This can be proved by induction. First, note that

Pn(0) =
∑

∥λ∥=n
|λ|=0

(−1)|λ|
|λ|!
λ!
Pλ(x)

because the value of the summand is 1 when λ = 0, and the sum is empty of n > 0. Suppose
for the sake of induction that the formula of the proposition holds for k < n. Then,

Pn(0) = Pn(x− x) =
∑
i+j=n

Pi(x)Pj(−x) = Pn(−x) +
∑
i+j=n
i>0

Pi(x)Pj(−x)

= Pn(−x) +
∑
i+j=n
i>0

Pi(x)
∑

∥λ∥=j
λ∈P (∗)

(−1)|λ|
|λ|!
λ!
Pλ(x)

= Pn(−x) +
∑
i+j=n
i>0

Pi(x)
∑
∥ℓ∥=j
ℓ∈C(∗)

(−1)|ℓ|Pℓ(x)

= Pn(−x)−
∑
i+j=n
i>0

∑
∥ℓ∥=j
c=ℓ+i

(−1)|c|Pc(x)

= Pn(−x)−
∑

∥c∥=n
|c|>0

(−1)|c|Pc(x)

= Pn(−x)−
∑

∥λ∥=n
|λ|>0

(−1)|λ|
|λ|!
λ!
Pλ(x).

The equality between the second and third lines follows by reparameterizing from partitions to
compositions. The equality between the third and fourth lines follows by rewriting in terms of the
composition c = ℓ+ i. The equality between the fifth and sixth lines follows by reparameterizing
back to partitions. We find that

Pn(−x) = Pn(0) +
∑

∥λ∥=n
|λ|>0

(−1)|λ|
|λ|!
λ!
Pλ(x) =

∑
∥λ∥=n
|λ|=0

(−1)|λ|
|λ|!
λ!
Pλ(x) +

∑
∥λ∥=n
|λ|>0

(−1)|λ|
|λ|!
λ!
Pλ(x)

=
∑

∥λ∥=n

(−1)|λ|
|λ|!
λ!
Pλ(x). □

Corollary 12.2. There is an equality

Pn(x− y) =
∑

i+∥λ∥=n

(−1)|λ|
|λ|!
λ!
Pi(x)Pλ(y).

Corollary 12.3. Any summand of A(G ≀ Σn) spanned by a subset of the canonical basis and
containing the image of Pn : A+(G) → A(G ≀ Σn) also contains the image of Pn : A(G) →
A(G ≀ Σn).

Proof. This follows from the fact that each of the summands Pi(x)Pλ(y) appearing in the formula
for Pn(x− y) is one of the summands in the expansion of Pn(x+ |λ|y). □
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In the case of the Burnside ring (or other similar cases), the power operations Pn : A(G) →
Å(G,n) are multiplicative (with the ring structure internal to Å(G,n), not the transfer product)
so that Pn(−X) = Pn(−1)Pn(X). In this case, it is only necessary to evaluate this formula to
compute Pn(−1).

Corollary 12.4. The following equation holds

Pn(−1) =
∑

∥λ∥=n

(−1)|λ|
|λ|!
λ!

Pλ(1) =
∑

∥λ∥=n

(−1)|λ|
|λ|!
λ!

ResG→e[Σn/α(λ)].

Transfer products. The transfer product on Parks(G,R), defined as in Proposition 8.2 by

(f ⋆ g)(µ) =
∑

κ+λ=µ

µ!

κ!λ!
f(κ)g(λ),

for f, g ∈ Parks(G,R) and µ ∈ Parts(G), has an alternative description in terms of compositions.

Proposition 12.5. For f, g ∈ Parks(G,R) and µ ∈ Parks(G),

(f ⋆ g)(µ) =
∑

I ·∪J=[|µ|]

f(uc(µ)|I)g(uc(µ)|J),

where [|µ|] is the set of size |µ| and ·∪ denotes the internal disjoint union of subsets of [|µ|]. In
particular, this sum ranges over I, J ⊆ [|µ|] such that I ∩ J = ∅ and I ∪ J = I ·∪ J = [|µ|]. More
generally, for I a finite indexing set and (fi ∈ Parks(G))i∈I an I-indexed family of parks,(

⋆
i∈I

fi

)
(µ) =

∑
·∪i∈I Ji=[|µ|]

∏
i∈I

fi(uc(µ)|Ji) =
∑

g : [|µ|]→I

∏
i∈I

fi(uc(µ)|g−1(i)),

where the first sum ranges over all pair-wise disjoint I-indexed covers (Ji ⊂ [|µ|])i∈I of [|µ|].

Proof. The formula follows from the observation that∑
I ·∪J=[|µ|]

f(uc(µ)|I)g(uc(µ)|J) =
∑

κ+λ=µ

∣∣∣{I ·∪ J = [|µ|] : uc(µ)|I=κuc(µ)|J=λ

}∣∣∣f(κ)g(λ).
Then, note that a choice of I ·∪ J = [|µ|] such that uc(µ)|I = κ and uc(µ)|J = λ amounts to
a choice of κx,m-many of the i ∈ [|µ|] such that c(µ)i = (x,m) for each x and m, which is
enumerated by the binomial coefficient µx,m!/κx,k!λx,m!. □

Corollary 12.6. The parks homomorphism χ : Å(G) → Parks(G) is given by

χ([(G ≀ Σn)/α(λ)])(κ) =
∑

g : [|κ|]→[|λ|]
∥c(κ)|g−1(i)∥=c(λ)

♯
i

∏
j∈[|κ|]

χ([G/c(λ)♭g(j)])(c(κ)
♭
j)

for κ, λ ∈ Parts(G), where [G/c(λ)♭i ] denotes the transitive G-set corresponding to the conjugacy
class c(λ)♭i ∈ Conj(G) i.e. [G/c(λ)♭i ] = [G/H] for any H ∈ c(λ)♭i . Note that this formula yields 0

when κ and λ do not have the same size.

Proof. This follows from Proposition 12.5, (5.8), and Corollary 8.4. □

This formula can be stated more efficiently in terms of refinements of partitions, but we
will not pursue this in order to avoid inflicting even more notation related to partitions and
compositions on the reader.
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13. Character theory for Å(G)

In this section we describe a universal property of Å(G) in terms of the map β and the parks
homomorphism of Definition 8.5.

Recall the commutative graded ring Marks(G ≀Σ) =
⊕

nMarks(G ≀Σn) from Subsection 2.13
and the map β : Conj(G ≀ Σ) → Parts(G) of Definition 9.1. Precomposition with β induces a
map β∗ : Parks(G,R) → Marks(G ≀ Σ, R) of graded abelian groups given by

β∗f([H]) = f(β([H]))

for f ∈ Parks(G,R) and [H] ∈ Conj(G ≀ Σ). Since β is surjective, β∗ is injective.

Proposition 13.1. The map β∗ : Parks(G,R) → Marks(G ≀Σ, R) is a homomorphism of com-
mutative graded rings.

Proof. It suffices to verify the claim for R = Z. It is immediate that β∗ preserves the ⋆-unit
because β([e ⊆ G ≀Σ0]) is the empty partition 0. Thus, it suffices to show that β∗ preserves the
transfer product. We will verify this on the graded pieces.

Consider i + j = n, f ∈ Parks(G, i), g ∈ Parks(G, j), and [K] ∈ Conj(G ≀ Σn). Then using
the transfer product formula of Subsection 2.12,

(β∗f ⋆ β∗g)([K]) =
∑

σ(Σi×Σj)∈Σn/Σi×Σj

Kσ⊆G≀Σi×G≀Σj

f(β(π[i][K
σ]))g(β(π[j][K

σ])).

Consider the condition Kσ ⊆ G ≀ Σi × G ≀ Σj . This occurs precisely when each orbit in the
quotient Kσ\[n] is completely contained in either [i] or [j]. Observe that the Kσ orbits are
exactly the images under σ−1 of the K orbits i.e. σ−1(Ka) = Kσσ−1(a) for a ∈ [n]. Thus,
such a σ determines a decomposition I ·∪ J = K\[n], where I = {Ka | σ−1(Ka) ⊆ [i]} and
similarly for J . Note that I and J are sets of orbits. This decomposition has the property that∑
Ka∈I |Ka| = i and similarly for J . Further, such a decomposition uniquely determines the

coset σ(Σi×Σj) because any two σ resulting in the same decomposition differ by a rearrangement
of the elements of [i] and [j] which does not swap elements between them.

Let k ∈ C(Conj(G),K\[n]) be defined by kKa = ([Kaa], |Ka|). By Definition 9.1, β([K]) =

uk. Now, we seek to write β(π[i][Kσ]) in terms of k. In this notation, π[i](Kσ)aa = Kσ(a)σ(a),
and the orbit π[i](Kσ)a ∈ π[i](K

σ)\[i] is just Kσa = σ−1(Kσ(a)) so that the set of orbits
π[i](K

σ)\[i] is exactly the set σ−1(I). Thus, it follows that

β(π[i](K
σ)) =

∑
π[i](Kσ)a∈π[i](Kσ)\[i]

([π[i](K
σ)aa], |π[i](Kσ)a|)

=
∑

π[i](Kσ)a∈π[i](Kσ)\[i]

([Kσ(a)σ(a)], |Kσ(a)|)

=
∑
Ka∈I

([Kaa], |Ka|) = uk|I

and similarly that β(π[j](Kσ)) = uk|J . Additionally, observe that the condition
∑
Ka∈I |Ka| = i

is equivalent to ∥k|I∥ = i and similarly for j.
Assembling these observations, we find that

(β∗f ⋆ β∗g)([K]) =
∑

I ·∪J=K\[n]
∥k|I∥=i

f(uk|I)g(uk|J) =
∑

I ·∪J=K\[n]

f(uk|I)g(uk|J)
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where the second equality follows from the fact that f ∈ Parks(G, i) is only supported on
partitions of size i. Then, using Proposition 12.5, it follows that

(β∗f ⋆ β∗g)([K]) = (f ⋆ g)(uk) = (f ⋆ g)(β([K])) = β∗(f ⋆ g)([K]). □

Proposition 13.2. There is a pullback diagram

(13.3)
Å(G) A(G ≀ Σ)

Parks(G) Marks(G ≀ Σ),

χ χ

β∗

of commutative graded rings where χ : Å(G) → Parks(G) is the map of Definition 8.5.

Proof. Let Ā(G) be the pullback. This may be identified with the subgroup Ā(G) ⊆ A(G ≀ Σ)
whose characters in Marks(G ≀ Σ) lie in the image of β∗. Since β has a section α, the image
of β∗ is exactly the collection of f ∈ Marks(G ≀ Σ) such that f([H]) = f(αβ([H])) for each
[H] ∈ Conj(G ≀ Σ). By Corollary 10.3, every isomorphism class of a submissive G ≀ Σn-set is in
Ā(G). This provides an inclusion Å(G) ⊆ Ā(G).

Since Q is flat and Q⊗A(G ≀Σ) ∼= Marks(G ≀Σ,Q), it follows that Q⊗ Ā(G) ∼= Parks(G,Q).
Since Ā(G) is a graded submodule of the free graded Z-module A(G ≀ Σ), it follows that Ā is a
free graded Z-module on |Parks(G,n)|-many generators of degree n. Since Ā(G) contains the
subset of the generators of A(G ≀ Σ) of the form α(λ) for λ ∈ Parts(G), it follows that Ā(G) is
the summand Å(G).

All that remains to show is that the map Å(G) ∼= Ā(G) → Parks(G) induced by the pullback
is the map χ : Å(G) → Parks(G) of Definition 8.5, and for this it suffices to show that (13.3)
commutes. To show the square commutes, it suffices to check on the polynomial generators
Pn([G/H]) of Corollary 5.12. The fact that the square commutes on polynomial generators
follows from Definition 5.4 of α and Definition 8.5 of χ : Å(G) → Parks(G) together with Corol-
lary 10.6. □

Corollary 13.4. The parks homomorphism χ : Å(G) → Parks(G) is a graded subring embed-
ding. In particular, the character maps Å(G,n) → Parks(G,n) are injective.

Corollary 13.5. The parks homomorphism is rationally an isomorphism. That is,

Q⊗ χ : Q⊗ Å(G) → Q⊗ Parks(G) ∼= Parks(G,Q)

is an isomorphism. In particular, the maps Q⊗ Å(G,n) → Parks(G,n,Q) are isomorphisms.

Corollary 13.6. There is a pullback diagram

Å(G,n) A(G ≀ Σn)

Parks(G,n) Marks(G ≀ Σn)

χ χ

β∗

of commutative rings. In particular, χ : Å(G,n) → Parks(G,n) is a map of rings.

Proof. The fact this is a pullback is immediate. The fact that it is a pullback of rings follows
from the fact that χ : A(G ≀ Σn) → Marks(G ≀ Σn) and β∗ : Parks(G,n) → Marks(G ≀ Σn) are
ring homomorphisms. □
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Corollary 13.7. The parks homomorphism can be computed in terms of the marks homomor-
phism. Specifically,

χ([(G ≀ Σn)/α(λ)])(κ) = χ([(G ≀ Σn)/α(λ)])(α(κ))

for κ, λ ∈ Parts(G,n). Note that the χ on the left is the parks homomorphism while the χ on
the right is the marks homomorphism.

Proof. This follows from the fact that βα(κ) = κ. □

Importantly, we may obtain a formula for the character of the total power operation on the
Burnside ring. A formula similar to this has appeared in the literature in [Gan, Section 4.3.4].

Corollary 13.8. There are commutative diagrams

A(G) Å(G,n) A(G ≀ Σn)

Marks(G) Parks(G,n) Marks(G ≀ Σn),

Pn

χ χ χ

Pn β∗

where Pn : Marks(G) → Parks(G,n) is the power operation of Proposition 8.3. In particular,
this provides a formula for Pn(f) ∈ Marks(G ≀ Σn) for f ∈ Marks(G):

χ(Pn(f))([H]) =
∏

[K],m

f([K])β([H])[K],m =
∏

Hi∈H\[n]

f([Hii])

for [H] ∈ Conj(G ≀ Σn).

14. Formulas for induced operations on parks

Let G and H be finite groups. We consider a fixed abelian group homomorphism F : A(H) →
A(G). Let F̊ : Å(H) → Å(G) be the map of Definition 6.8. Rationalizing, we obtain maps

F : Marks(H,Q) → Marks(G,Q) and F̊ : Parks(H,Q) → Parks(G,Q).

The map on marks can be given a formula using the canonical bases. In this section, we provide
a formula for the map F̊ on parks in terms of the canonical bases.

Let M(F ) denote the matrix representation of F on marks in the bases of indicator functions.
That is,

F (f)([K]) =
∑

[L]∈Conj(H)

M(F )
[K]
[L] f([L]),

where f ∈ Marks(H,Q) and [K] ∈ Conj(G) or equivalently

F (1[L]) =
∑
[K]

M(F )
[K]
[L] 1[K],

where 1[L] denotes the indicator function of a conjugacy class [L].

Proposition 14.1. Define the quantity M̊(F )κλ for κ ∈ Parts(G) and λ ∈ Parts(H) by the
formula

M̊(F )κλ =
∑

ℓ♯=c(κ)♯

ℓ∈C(λ)

∏
i

M(F )
c(κ)♭i
ℓ♭i

.

This is a well-defined formula.
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Proof. There are two potential well-definition issues. First, the product
∏
iM(F )

c(κ)♭i
ℓ♭i

with the
domain of summation omitted is only defined when ℓ and c(κ) have the same length (and thus
the same set indexing their parts), but this is the case when ℓ♯ = c(κ)♯. Then, one must verify
that this quantity is independent of the choice of composition c(κ), but this follows from the
fact that any two such compositions differ by a permutation in Σ|κ| which amounts to reordering

the factors in
∏
iM(F )

c(κ)♭i
ℓ♭i

for an ℓ differing by the same permutation. □

Theorem 14.2. The map F̊ : Parks(H,Q) → Parks(G,Q) is given by

F̊ (f)(κ) =
∑

λ∈Parts(H)

M̊(F )κλf(λ) =
∑
λ♯=κ♯

λ∈Parts(H)

M̊(F )κλf(λ).

Equivalently,

F̊ (f)(κ) =
∑

ℓ♯=c(κ)♯

ℓ∈C(Conj(G))

f(uℓ)
∏
i

M(F )
c(κ)♭i
ℓ♭i

.

Proof. By Proposition 6.2, to verify the correctness of this formula, it suffices to check that it is
compatible with the power operations and the transfer product. First, we check compatibility
with the power operations. For f ∈ Marks(H,Q) and κ ∈ Parts(G,n), we compute that

Pn(F (f))(κ) =
∏

[K]∈Conj(G)
m∈N+

F (f)([K])κ[K],m =
∏
i

F (f)(c(κ)♭i)

=
∏
i

∑
ℓi∈Conj(H)

M(F )
c(κ)♭i
ℓi

f(ℓi)

=
∑

ℓ♯=c(κ)♯

ℓ∈C(Conj(H))

∏
i

M(F )
c(κ)♭i
ℓ♭i

f(ℓ♭i)

=
∑

ℓ♯=c(κ)♯

ℓ∈C(Conj(H))

Pn(f)(uℓ)
∏
i

M(F )
c(κ)♭i
ℓ♭i

=
∑

λ∈Parts(H)

Pn(f)(λ)
∑

ℓ♯=c(κ)♯

ℓ∈C(λ)

∏
i

M(F )
c(κ)♭i
ℓ♭i

=
∑

λ∈Parts(H)

M̊(F )κλPn(f)(λ) = F̊ (Pn(f))(κ).

The nontrivial equality on the first line translates between partitions and composition as in
(11.1). The equality between the second and third lines follows from the fact that a choice
ℓi ∈ Conj(H) for each i which indexes c(κ) is the same data as choosing a decoration from
Conj(H) for each of the parts of c(κ)♯. The equality between the fourth and fifth lines follows
from the fact that summing over compositions is the same as first summing over partitions and
then the compositions of those partitions. The other equalities are applying definitions.
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Next, we check compatibility with the transfer product. For f, g ∈ Parks(H,Q) and µ ∈
Parts(G), we compute that

(F̊ (f) ⋆ F̊ (g))(µ) =
∑

I ·∪J=[|µ|]

F̊ (f)(uc(µ)|I)F̊ (g)(uc(µ)|J)

=
∑

I ·∪J=[|µ|]

∑
k♯=c(µ)♯|I
ℓ♯=c(µ)♯|J

k∈C(I,Conj(H))
ℓ∈C(J,Conj(H))

f(uk)g(uℓ)
∏
i∈I

M(F )
c(µ)♭i
k♭

∏
j∈J

M(F )
c(µ)♭j
λ♭
j

=
∑

I ·∪J=[|µ|]

∑
ℓ♯=c(µ)♯

ℓ∈C(Conj(H))

f(uℓ|I)g(uℓ|J)
∏
i

M(F )
c(µ)♭i
ℓ♭i

=
∑

ℓ♯=c(µ)♯

ℓ∈C(Conj(H))

∑
I ·∪J=[|uℓ|]

f(uℓ|I)g(uℓ|J)
∏
i

M(F )
c(µ)♭i
ℓ♭i

=
∑

ℓ♯=c(µ)♯

ℓ∈C(Conj(H))

(f ⋆ g)(uℓ)
∏
i

M(F )
c(µ)♭i
ℓ♭i

= F̊ (f ⋆ g)(µ).

The equality of the first line comes from Proposition 12.5. The equality between the second and
third line follows from the bijection C(I,Conj(H)) × C(J,Conj(H)) ∼= C([|µ|],Conj(H)). The
other equalities follow from manipulating definitions and summation order. □

Corollary 14.3. Let λ ∈ Parts(H) and let 1λ ∈ Parks(H,Q) denote the indicator function of
λ. Then,

F̊ (1λ) =
∑

κ∈Parks(G)

M̊(F )κλ1κ

so that

F̊ (1λ)(κ) = M̊(F )κλ =
∑

ℓ♯=c(κ)♯

ℓ∈C(λ)

∏
i

M(F )
c(κ)♭i
ℓ♭i

.

Corollary 14.4. If the matrix components M(F )
[K]
[L] are elements of a commutative ring R,

then the formula of Theorem 14.2 provides a commutative graded ring map

F̊ : Parks(H,R) → Parks(G,R)

which fits into a commutative square

Å(H) Å(G)

Parks(H,R) Parks(G,R)

F̊

χ χ

F̊

witnessing compatibility with the character map.

In particular, the results of Section 15, Section 16, and Section 17 apply to an arbitrary
coefficient ring R so long as the coefficients of M(F ) are elements of R.
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15. A general formula for transfers on parks

In this section, we analyze the specific case of Theorem 14.2 when the map F : A(H) → A(G)

is a transfer along a (not necessarily injective) group homomorphism. We only rely on one fact
about transfers along group homomorphisms: that certain values M(F )

[K]
[L] are zero. Thus, we

start by proving a generalization of the result for transfers along group homomorphisms, and
then conclude the result about group homomorphisms as a corollary. We continue to use the
notation of the previous section.

Proposition 15.1. Let F : A(H) → A(G) be a map of abelian groups. Suppose that for fixed
[L], there is at most one [K] such that M(F )

[K]
[L] is nonzero. Equivalently, suppose there is a

function ψ : Conj(H) → Conj(G) with the property that M(F )
[K]
[L] is nonzero only if ψ[L] = [K].

Write M(F )[L] for M(F )
ψ[L]
[L] so that

F (f)([K]) =
∑

[L]∈ψ−1[K]

M(F )[L]f([L])

for f ∈ Marks(H,Q) and [K] ∈ Conj(G). Define coefficients

M̊(F )λ =
(ψ∗λ)!

λ!

∏
[L],m

(M(F )[L])
λ[L],m

for λ ∈ Parts(H). Then, F̊ : Parks(H,Q) → Parks(G,Q) has the following formula:

F̊ (f)(κ) =
∑

λ∈ψ−1
∗ κ

M̊(F )λf(λ)

for f ∈ Parks(H,Q) and κ ∈ Parts(G), where ψ−1
∗ denotes the preimage under ψ∗ : Parts(H) →

Parts(G). Equivalently,

F̊ (f)(κ) =
∑

λ∈ψ−1
∗ κ

κ!

λ!
f(λ)

∏
[L],m

(M(F )[L])
λ[L],m .

Note that the quantities κ!/λ! = ψ∗λ!/λ! are integral.

Proof. To prove this claim, it suffices to study the coefficients

M̊(F )κλ =
∑

ℓ♯=c(κ)♯

ℓ∈C(λ)

∏
i

M(F )
c(κ)♭i
ℓ♭i

used in Theorem 14.2. First, note that if ψ∗ℓ ̸= c(κ), the product
∏
iM(F )

c(κ)♭i
ℓ♭i

will be zero

since at least one of the values M(F )
c(κ)♭i
ℓ♭i

will be zero. Further, in the case that ψ∗ℓ = c(κ),
this product is simply

∏
iM(F )ℓ♭i . Thus,

M̊(F )κλ =
∑

ψ∗ℓ=c(κ)
ℓ∈C(λ)

∏
i

M(F )ℓ♭i = |{ℓ ∈ C(λ) : ψ∗ℓ = c(κ)}|
∏
[L],m

(M(F )[L])
λ[L],m .

Thus, it suffices to enumerate those ℓ ∈ C(λ) such that ψ∗ℓ = c(κ). There exists such an ℓ if
and only if ψ∗λ = κ. In such a case, choose c(λ) such that ψ∗c(λ) = c(κ). Any other choice of ℓ
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differs from c(λ) by permutation in Σ|λ| which fixes c(κ) i.e. a permutation in Σc(κ). Two such
permutations give the same choice of ℓ whenever σ ∈ Σc(λ). Thus,

(15.2) |{ℓ ∈ C(λ) : ψ∗ℓ = c(κ)}| = [Σc(κ) : Σc(λ)] =
κ!

λ!
.

The result now follows. □

Corollary 15.3. On indicator functions,

F̊ (1λ) = M̊(F )λ1ψ∗λ =
(ψ∗λ)!

λ!
1ψ∗λ

∏
[L],m

(M(F )[L])
λ[L],m

for λ ∈ Parts(H).

Let φ : H → G be a homomorphism of finite groups. The map Trφ : A(H) → A(G) is
of the form required for Proposition 15.1. The map ψ of the proposition is the induced
map φ : Conj(H) → Conj(G). That is, the transfer map on marks is determined by values
M(Trφ)[L] ∈ Q for [L] ∈ Conj(H) such that

Trφ(f)([K]) =
∑

[L]∈φ−1([K])

M(Trφ)[L]f([L]),

where φ−1 denotes the preimage under φ : Conj(H) → Conj(G). For arbitrary φ, it is difficult
to give an elegant formula for the coefficients M(Trφ)[L], or even for the transfer map on marks.
A formula for the coefficients M(Trφ)[L] in terms of Möebius inversion can be extracted from
the results of Bouc in [Bou10, Chapter 5].

Corollary 15.4. Let φ : H → G be a homomorphism of finite groups. Then, the transfer map
on parks Trφ : Parks(H,Q) → Parks(G,Q) has the following formula:

Trφ(f)(κ) =
∑

λ∈φ−1
∗ κ

M̊(Trφ)λf(λ)

for f ∈ Parks(H,Q) and κ ∈ Parts(G). On indicator functions,

Trφ(1λ) = M̊(Trφ)λ1φ∗λ

for λ ∈ Parts(H).

Proof. This follows immediately from Proposition 15.1 using F = Trφ and ψ = φ : Conj(H) →
Conj(G). □

16. Special cases of the transfer formula

Although it is difficult to give an elegant formula for the transfer map on marks for an
arbitrary homomorphism φ : H → G, some homomorphisms have a convenient transfer formula.
In this section, we seek to provide alternative formulas for Corollary 15.4 in such cases. In
particular, we consider subgroup inclusions and the map H → e.

We begin by discussing subgroup inclusions. Recall the classical formula for the transfer on
marks along a subgroup inclusion

(16.1) TrH⊆G(f)([K]) =
∑

gH∈G/H
Kg⊆H

f([Kg]).
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In particular, this involves choosing a representative for the conjugacy class and the conjugation
action on subgroups. We seek to reproduce these ideas on compositions.

Note that if G acts on X (say, on the right), then GI acts on C(I,X) by acting on decora-
tions. Let q : X → X/G denote the orbit map. Then, q∗ : C(I,X) → C(I,X/G) induces to an
isomorphism C(I,X)/GI → C(I,X/G). Of particular utility is the conjugation action of G on
Sub(G), where Sub(G) denotes the set of subgroups of G. Recall the map u of Section 11 that
associates to a decorated composition its underlying decorated partition.

Proposition 16.2. Let φ be a subgroup inclusion H ⊆ G. Let f ∈ Parks(H) and κ ∈ Parts(G).
Choose a composition k ∈ q−1

∗ C(κ) ⊆ C(Sub(G)) and let c(κ) = q∗k. The composition k

amounts to a choice of ordering of the parts of κ, along with a choice of representative for each
of the conjugacy classes that decorate the parts.

Then, TrH⊆G : Parks(H,Q) → Parks(G,Q) is given by

TrH⊆G(f)(κ) =
∑

gH×|κ|∈G×|κ|/H×|κ|

kg∈C(|κ|,Sub(H))

f(uq∗k
g),

where C(|κ|,Sub(H)) ⊆ C(|κ|,Sub(G)).

Proof. The coefficients M(TrH⊆G)[L] used in Proposition 15.1 are given by

(16.3) M(TrH⊆G)[L] = [NG(L) : NH(L)].

We will prove Proposition 16.2 using (16.3) and Corollary 15.4. Notice that the formula of
Proposition 16.2 on Parks(H, 1,Q) ∼= Marks(H,Q) is equivalent to the classical formula (16.1).
Thus, our proof of Proposition 16.2 will additionally verify the correctness of (16.3).

Let =G denote the equivalence relation of two subgroups being G-conjugate and =H denote
the equivalence relation of two subgroups being H-conjugate. Choose subgroups L ⊆ H and
K ⊆ G and suppose K =G L. Choose a ∈ G witnessing that Ka = L. Then,

{g ∈ G/H : Kg =H L} = a{gH : Lg =H L} = aNG(L)H/H ∼= NG(L)/NH(L)

so that

(16.4) |{gH : Kg ∈ [L]}| = |{gH : Kg =H L}| = |NG(L)|
|NH(L)|

=M(TrH⊆G)[L].

Notice that [L] ∈ φ−1
∗ ([K]) if and only if L =G K. Thus, (16.4) holds when φ∗[L] = [K].

Now, we compute that∑
gH×|κ|∈G×|κ|/H×|κ|

kg∈C(Sub(H))

f(uq∗k
g) =

∑
gH×|κ|∈G×|κ|/H×|κ|

ℓ∈C(Conj(H))
kg∈C(Sub(H))

q∗k
g=ℓ

f(uℓ)

=
∑

ℓ∈C(Conj(H))

f(uℓ)
∣∣∣{gH×|κ| ∈ G×|κ|/H×|κ| : k

g∈C(Sub(H))
q∗k

g=ℓ

}∣∣∣
=

∑
φ∗ℓ=q∗k

ℓ∈C(Conj(H))

f(uℓ)
∣∣∣{gH×|κ| ∈ G×|κ|/H×|κ| :

(k♭i )
gi⊆H

(k♭i )
gi∈ℓi♭

∀i
}∣∣∣

=
∑

φ∗ℓ=q∗k
ℓ∈C(Conj(H))

f(uℓ)
∏
i

∣∣∣{gH ∈ G/H : (k♭i )
g ∈ ℓi♭

}∣∣∣
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=
∑

φ∗ℓ=c(κ)
ℓ∈C(Conj(H))

f(uℓ)
∏
i

M(TrH⊆G)ℓ♭i

=
∑

λ∈φ−1
∗ κ

f(λ)
∑

φ∗ℓ=c(κ)
ℓ∈C(λ)

∏
[L],m

(M(TrH⊆G)[L])
λ[L],m

=
∑

λ∈φ−1
∗ κ

κ!

λ!
f(λ)

∏
[L],m

(M(TrH⊆G)[L])
λ[L],m = TrH⊆G(f)(κ).

The first equality follows by reparameterizing the sum according to the value of q∗κg. The second
equality follows by recognizing the the summand is independent of most of the sum’s quantifiers.
The third equality follows by restricting the sum to only those compositions whose corresponding
counting problem gives a nonzero result and by replacing statements about compositions with
index-wise statements. The fourth equality follows by replacing the index-wise counting problem
with a product of counting problems. The fifth equality follows from (16.4). The sixth equality
follows from (11.1) and reparameterizing the sum according to partitions. The seventh equality
follows from (15.2). □

Next, we consider transfers to the trivial group. Recall the Burnside orbit counting lemma
which gives a formula for the transfer A(G) → A(e) on marks:

(16.5) TrG→e(f)([e]) =
1

|G|
∑
g∈G

f([⟨g⟩]),

for f ∈ Marks(G,Q). In particular, this formula involves taking conjugacy classes of cyclic
subgroups generated by g ∈ G. We will need a version of this for compositions.

Let s : G → Conj(G) : g 7→ [⟨g⟩] be the function that maps an element to the conjugacy
class of its cyclic subgroup. Then, we may consider s∗ : C(G) → C(Conj(G)) which replaces
decorations by elements of G with the conjugacy class of the cyclic subgroup they generate.

Proposition 16.6. The transfer TrG→e : Parks(G,Q) → Parks(e,Q) is given by

TrG→e(f)(λ) =
1

|G||λ|
∑

c♯=c(λ)
c∈C(G)

f(us∗c)

for f ∈ Parks(G,Q) and an integer partition λ ∈ Parts(e).

Notice that there is a bijection between the set of c ∈ C(G) such that c♯ = c(λ) and G×|λ|,
so this is really a generalization of Burnside’s orbit counting lemma.

Proof. The coefficients M(TrG→e)[K] used in Proposition 15.1 are given

(16.7) M(TrG→e)[K] =

{
|(Z/|K|)×|/|NG(K)| K cyclic

0 otherwise.

We will prove Proposition 16.6 using (16.7) and Corollary 15.4. Notice the the formula of
Proposition 16.6 on Parks(G, 1,Q) ∼= Marks(G,Q) is equivalent to Burnside orbit counting
lemma (16.5). Thus, our proof of Proposition 16.6 will additionally verify the correctness of
(16.7).
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Suppose that H ⊆ G is a cyclic subgroup. Then,

{g ∈ G : [⟨g⟩] = [H]} ∼=
∐

K=GH

{g : ⟨g⟩ = K}

∼= {K : K =G H} × (Z/|H|)× ∼= G/NG(H)× (Z/|H|)×.

Otherwise, this set is empty. Thus,

(16.8) |{g : [⟨g⟩] = [H]}| = |G|M(TrG→e)[H].

Let φ denote the map G→ e. Notice that φ∗κ = κ♯ for κ ∈ Parts(G). Then, we compute that

1

|G||λ|
∑

c♯=c(λ)
c∈C(G)

f(us∗c) =
1

|G||λ|
∑

k♯=c(λ), s∗c=k
k∈C(Conj(G)), c∈C(G)

f(uk)

=
1

|G||λ|
∑

k♯=c(λ)
k∈C(Conj(G))

f(uk)|{c ∈ C(G) : s∗c = k}|

=
1

|G||λ|
∑

k♯=c(λ)
k∈C(Conj(G))

f(uk)
∏
i

|{g : [⟨g⟩] = k♭i}|

=
1

|G||λ|
∑

k♯=c(λ)
k∈C(Conj(G))

f(uk)
∏
i

|G|M(TrG→e)k♭i

=
∑

k♯=c(λ)
k∈C(Conj(G))

f(uk)
∏
i

M(TrG→e)k♭i

=
∑
κ♯=λ

κ∈Parts(G)

f(κ)
∑

k♯=c(λ)
k∈C(κ)

∏
[K],m

(M(TrG→e)[K])
κ[K],m

=
∑
κ♯=λ

κ∈Parts(G)

λ!

κ!
f(κ)

∏
[K],m

(M(TrG→e)[K])
κ[K],m

= TrG→e(f)(λ).

The first equality follows from reparameterizing the sum according to the value of s∗k. The
second equality follows by recognizing the the summand is independent of most of the sum’s
quantifiers. The third equality follows by replacing the counting problem by the product over
each index of a counting problem for that index. The fourth equality follows from (16.8). The
sixth equality follows from (11.1) and reparameterizing the sum according to partitions. The
seventh equality follows from (15.2). □

The proposition above provides a formula for the transfer Å(G,n) → A(Σn) on the level of
parks and marks. That is, on the subring Å(G,n) ⊆ A(G ≀Σn), the transfer A(G ≀Σn) → A(Σn)

admits a Burnside-lemma-like description.
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It is worth noting that such a formula should have been expected. The commutativity of the
diagram

Å(G,n) //

Tr

��

A(G ≀ Σn) //

Tr

��

RU(G ≀ Σn)

Tr

��
Å(e, n) // A(Σn) // RU(Σn)

and the fact that the composite along the bottom is an isomorphism implies that the formula for
the transfer Parks(G,n,Q) → Parks(e, n,Q) can be given in terms of the formula for the transfer
in representation theory. A consequence of this observation is that, since A(C) embeds in RU(C)

for any cyclic group C, there is always a formula analogous to Burnside’s orbit counting lemma
for the transfer along a surjection from a finite group onto a cyclic group.

17. Formulas for restrictions on parks

In this section, we analyze Theorem 14.2 in the case where the map F : A(H) → A(G) is
a restriction. In fact, we consider a slight generalization of this situation, which includes the
Frobenius–Wielandt map as an example.

Proposition 17.1. Let F : A(H) → A(G) be a map of abelian groups. Suppose that F is given
on marks by restriction along a function. Equivalently, suppose there is a map ψ : Conj(G) →
Conj(H) with the property that

F (f)([K]) = f(ψ[K])

for f ∈ Marks(H,Q). Then, F̊ : Parks(H,Q) → Parks(G,Q) has the following formula:

F̊ (f)(κ) = f(ψ∗κ)

for f ∈ Parks(H,Q) and κ ∈ Parts(G), where ψ∗ denotes the pushforward Parts(G) → Parts(H).
On indicator functions,

F̊ (1λ) =
∑

κ∈ψ−1
∗ λ

1κ

for λ ∈ Parts(H), where ψ−1
∗ denotes the preimage under ψ∗.

Proof. This is a simple consequence of Theorem 14.2. First, notice that the matrix components
M(F ) are given by

M(F )
[K]
[L] =

{
1, ψ[K] = [L]

0, otherwise.

Thus, we compute that

M̊(F )κλ =
∑

ℓ♯=c(κ)♯

ℓ∈C(λ)

∏
i

M(F )
c(κ)♭i
ℓ♭i

=
∑

ℓ=ψ∗c(κ)
ℓ∈C(λ)

1 =

{
1, ψ∗κ = λ

0, otherwise.

This completes the proof. □

Let φ : G → H be a homomorphism of finite groups. The restriction map Resφ has a very
simple formula on marks:

Resφ(f)([K]) = f(φ[K]) = f([φ(K)])
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for f ∈ Marks(H,Q), where φ : Conj(G) → Conj(H) is the induced map on conjugacy classes
of subgroups. Thus, we may specialize the previous proposition to the case of restriction along
a group homomorphism.

Corollary 17.2. Let φ : G → H be a homomorphism of finite groups. Then, the restriction
map on parks Resφ : Parks(H,Q) → Parks(G,Q) has the following formula:

Resφ(f)(κ) = f(φ∗κ)

for f ∈ Parks(H,Q) and κ ∈ Parts(G). On indicator functions,

Resφ(1λ) =
∑

κ∈φ−1
∗ λ

1κ

for λ ∈ Parts(H).

Proof. This follows immediately from Proposition 17.1 using F = Resφ and ψ = φ : Conj(G) →
Conj(H). □

18. The Frobenius–Wielandt map and norms

Proposition 17.1 is relevant to more than restriction along group homomorphisms. In particu-
lar, we may apply it to the Frobenius–Wielandt map. In this section, we extend the Frobenius–
Wielandt map to the Burnside ring of the wreath product compatibly with the total power
operation and describe the relation to work of Romero in [Rom20].

Let Cm denote the cyclic group of size m. When d | m, we will identify Cd with the unique
order d subgroup of Cm. Further, for a finite group G, let CG denote the cyclic group with the
same order as G so that CG = C|G|.

Recall the Frobenius–Wielandt map w : A(CG) → A(G). The map w is given on marks by pre-
composition with Cyc: Conj(G) → Conj(CG) sending [H] to the conjugacy class of CH ⊆ CG.
Thus, w extends to a commutative graded ring homomorphism ẘ : Å(CG) → Å(G), and the in-
duced map ẘ : Parks(CG,Q) → Parks(G,Q) is given by precomposition with Cyc∗ : Parts(G) →
Parts(CG). We have the following corollary:

Corollary 18.1. There is a commutative diagram

A(CG)
w //

Pn

��

A(G)

Pn

��
Å(CG, n)

ẘ // Å(G,n).

We may use ẘ : Å(CG, n) → Å(G,n) to define a map

wn : A(CG ≀ Σn) → A(G ≀ Σn)

that is compatible with w : A(CG) → A(G) through the total power operation Pn. We define
wn to be the composite

wn : A(CG ≀ Σn)
r−→ Å(CG, n)

ẘ−→ Å(G,n) ↪→ A(G ≀ Σn),

where r is the map of Definition 9.4.
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Corollary 18.2. There is a commutative diagram

A(CG)
w //

Pn

��

A(G)

Pn

��
A(CG ≀ Σn)

wn // A(G ≀ Σn).

Recall that, for H ⊆ G, the norm (also called tensor induction) from H to G is the multi-
plicative map

NmG
H : A(H) → A(G)

induced by the map sending an H-set X to the G-set FunH(G,X) of H-equivariant maps from
G to X. It is compatible with the function NmG

H : Marks(H) → Marks(G) given by

NmG
H(f)([K]) =

∏
KgH∈K\G/H

f([Kg ∩H]).

Further, the norm can be constructed from the total power operation. Let n = [G : H]. The
monomial representation (or relative Cayley map) is an injective homomorphism G → H ≀ Σn,
which is well-defined up to conjugacy (see [Eve91, Section 5.2] for a complete description). The
norm is the composite

A(H)
Pn−→ A(H ≀ Σn)

ResH≀Σn
G−−−−−→ A(G),

where the restriction is along the monomial representation.
In [Rom20], Romero considers the interaction between the Frobenius–Wielandt map and

norms for Burnside rings. Let H ⊆ G be a subgroup. The subgroup H is said to satisfy the
“gcd property” if for all subgroups K ⊆ G,

|K ∩H| = gcd(|K|, |H|).

Subgroups satisfying the gcd property are necessarily normal. Romero proves that the the norm
from H to G commutes with the Frobenius–Wielandt map if and only if H satisfies the gcd
property.

However, Corollary 18.2 explains that the Frobenius–Wielandt map can always be extended
to the target of the total power operation. This suggests that the gcd property is really a
requirement on the restriction map ResH≀Σn

G along the monomial representation, and the next
two results will prove that this is in fact the case.

Since the total power operation factors through Å(H,n), it suffices to understand the com-
posite

Å(H,n) ↪→ A(H ≀ Σn)
ResH≀Σn

G−−−−−→ A(G).

We will call this composite RHG .

Proposition 18.3. Let H ⊆ G and let n = [G : H]. The restriction map RHG described above
is compatible with the map RHG : Parks(H,n) → Marks(G) given by the formula

RHG (f)([K]) = f

 ∑
KaH∈K\G/H

([Ka ∩H], |KaH|/|H|)


for f ∈ Parks(H,n) and [K] ∈ Conj(G).
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Proof. Let φ : G→ H ≀ Σn denote the monomial representation. The map RHG : Parks(H,n) →
Marks(G) is the composite

RHG : Parks(H,n)
β∗

−→ Marks(H ≀ Σn)
Resφ−−−→ Marks(G),

and the map Resφ on marks is given by precomposition with φ : Conj(G) → Conj(H ≀ Σn).
Thus, to understand RHG , we only need to understand the map βφ : Conj(G) → Parts(H,n).
We will prove the proposition by showing that

βφ[K] =
∑

KaH∈K\G/H

([Ka ∩H], |KaH|/|H|).

For the sake of this proof, we will choose a particular monomial representation, among the
many conjugate choices. Let [n] be the set G/H so that Σn = ΣG/H and H×n = HG/H . Let
φΣ : G→ Σn be the (Cayley) homomorphism defined by

φΣ(g) : aH 7→ gaH.

Choose a section s : G/H → G of the quotient G → G/H. We will write s(a) for s(aH) to
reduce clutter. Define a function φH : G→ H×n by

φH(g)aH = s(a)−1gs(g−1a).

Then, the monomial representation is the homomorphism

φ : G→ H ≀ Σn : g 7→ (φH(g), φΣ(g)).

To see that this is a homomorphism, note that

φ(g)φ(g′) = (φH(g)φΣ(g)φH(g′), φΣ(g)φΣ(g
′)) = (φH(gg′), φΣ(gg

′)) = φ(gg′),

where the nontrivial equality follows from the fact that

(φH(g)φΣ(g)φH(g′))aH = s(a)−1gs(g−1a)s(g−1a)−1g′s(g′−1g−1a) = φ(gg′)aH .

By Definition 9.1,

βφ[K] =
∑

φ(K)i∈φ(K)\[n]

([φ(K)ii], |φ(K)i|).

Now, we take advantage of the fact that [n] = G/H and that the action of K on G/H is left
multiplication. Then, we may identify the quotient φ(K)\[n] with K\G/H and the quantity
|φ(K)i| with |KaH|/|H|, the number of H-cosets in the K-orbit KaH, where i ∈ [n] is identified
with aH ∈ G/H. All that remains is to understand the subgroup φ(K)ii = φ(K)aH aH .

By definition φ(K)aH aH = {φH(g)aH | g ∈ G, gaH = aH}. In the situation that gaH = aH,
it follows that φH(g)aH = s(a)−1gs(a). Further, gaH = aH if and only if a−1ga ∈ H if
and only if s(a)−1gs(a) ∈ H. Thus, it follows that φ(K)aH aH = Ks(a) ∩ H and thus that
[φ(K)aH aH ] = [Ka ∩H].

Assembling these observations, we find that

βφ[K] =
∑

KaH∈K\G/H

([Ka ∩H], |KaH|/|H|). □
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Proposition 18.4. Assume H ⊆ G and let n = [G : H]. The diagram

(18.5)
Å(CH , n) A(CG)

Å(H,n) A(G)

R
CH
CG

ẘ w

RH
G

commutes if and only if H satisfies the gcd property.

Proof. The square (18.5) commutes if and only if the same corresponding square on parks and
marks commutes. Using Proposition 18.3, all of the maps on parks and marks are given by
precomposition with known functions, so (18.5) commutes if and only if

Conj(G) Parts(H,n)

Conj(CG) Parts(CH , n)

βφ

Cyc Cyc∗

βφ

commutes. For [K] ∈ Conj(G), the top composite is given by

Cyc∗ βφ([K]) = Cyc∗

 ∑
KaH∈K\G/H

([Ka ∩H], |KaH|/|H|)


=

∑
KaH∈K\G/H

([CKa∩H ], |KaH|/|H|)

while the bottom composite is given by

βφCyc([K]) = βφ([CK ]) =
∑

CKmCH∈CK\CG/CH

([CK
m ∩ CH ], |CKmCH |/|CH |)

=
|G|

lcm(|K|, |H|)

(
[Cgcd(|K|,|H|)],

lcm(|K|, |H|)
|H|

)
.

Thus, (18.5) commutes if and only if

(18.6)
∑

KaH∈K\G/H

([CKa∩H ], |KaH|/|H|) = |G|
lcm(|K|, |H|)

(
[Cgcd(|K|,|H|)],

lcm(|K|, |H|)
|H|

)
for each subgroup K ⊆ G.

Suppose H satisfies the gcd property. Then, for each subgroup K ⊆ G and a ∈ G, |Ka∩H| =
gcd(|K|, |H|) so that CKa∩H = Cgcd(|K|,|H|). Further, H is normal so

|KaH|
|H|

=
|KH|
|H|

=
|K| · |H|

|K ∩H| · |H|
=

|K|
gcd(|K|, |H|)

=
lcm(|K|, |H|)

|H|

and

|K\G/H| = |G|
|KH|

=
|G| · |K ∩H|
|K| · |H|

=
|G| · gcd(|K|, |H|)

|K| · |H|
=

|G|
lcm(|K|, |H|)

.

From these observations, we conclude (18.6) and thus that (18.5) commutes.
Now suppose that (18.5) commutes and thus that (18.6) holds for each subgroup K ⊆ G.

Since the right hand side of (18.6) is just a multiple of a single part with decoration [Cgcd(|K|,|H|)],
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(18.6) implies in particular that [CK∩H ] = [Cgcd(|K|,|H|)] since ([CK∩H ], |KeH|/|H|) is a sum-
mand of the left hand side. Thus |K ∩ H| = gcd(|K|, |H|) for each K so that H satisfies the
gcd property. □
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