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Abstract. Equivariant complex K-theory and the equivariant sphere spectrum are two
of the most fundamental equivariant spectra. For an odd p-group, we calculate the zeroth
homotopy Green functor of the localization of the equivariant sphere spectrum with

respect to equivariant complex K-theory. Further, we calculate the zeroth homotopy
Tambara functor structure in the case of odd cyclic p-groups.
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1. Introduction

In the ’70s, Adams–Baird (unpublished) and Ravenel [Ra], see also [Bo], calculated the
homotopy groups of the KU -localization of the sphere spectrum. In particular, they found
that π0LKUS ≅ Z⊕ F2. In fact, the natural homotopy commutative ring structure on LKUS
endows π0LKUS with the ring structure Z[x]/(2x,x2). Both complex K-theory KU and the
sphere spectrum S admit natural equivariant refinements. Let q be an odd prime. The goal of
this paper is to calculate the Mackey functor π0 of the localization of the equivariant sphere
spectrum with respect to equivariant complex K-theory when the group of equivariance is a
q-group.

Fix a q-group G. Let KUG be genuine equivariant complex K-theory and let SG be the
genuine equivariant sphere spectrum. We will denote the zeroth homotopy Mackey or Green
functor by π0. Both π0KUG and π0SG admit concrete descriptions — π0KUG ≅ RU , the
complex representation ring Green functor, and π0SG ≅ A, the Burnside ring Green functor.
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Our goal is to understand π0LKUG
SG, the equivariant generalization of the result of Adams–

Baird and Ravenel mentioned above. As SG is an E∞-ring in G-spectra, [H, Corollary 3.12]
implies LKUG

SG is again E∞, and hence π0LKUG
SG is a Green functor. In fact, we show in

Proposition 10.2 that LKUG
SG is a G-E∞ ring. This implies that π0LKUG

SG is furthermore
a Tambara functor, and we determine this structure in the case that G is an odd cyclic
q-group.

Let J ⊂ A be the Mackey ideal with J(G/H) ⊂ A(G/H) generated by virtual H-sets X
such that ∣Xh∣ = 0 for all h ∈H. We show the following:

Theorem 1.1. Let G be an odd q-group. Then there is an isomorphism of Green functors

π0LKUG
SG ≅ (A/J) ⊗ π0(LKUS) ≅ (A/J)[x]/(2x,x2).

Our work on this result was motivated by two things. First was our desire to understand
the genuine equivariant analogue of a question of Ravenel’s [Ad] about the kernel of the
canonical map from the Burnside ring to the K(n)-local cohomotopy of BG when n = 1.
Theorem 1.1 is certainly the kind of answer that Ravenel would have expected. See also
[Sz, Section 4.2] for Ravenel’s question when n = 1. Second was our desire to understand how
to calculate with localizations in genuine equivariant stable homotopy theory. We learned
that the geometric fixed point functors are the most powerful tools in the toolkit. From this
perspective, we view Theorem 1.1 as a first nontrivial exercise to solve.

To prove Theorem 1.1, we follow the standard strategy for calculating the homotopy
groups of the KU -local sphere, adding in some applications of the geometric fixed point
functors when needed. That is, we use the arithmetic fracture square (2.3) in order to work
locally at a prime p. The calculation looks different when p is equal to q in comparison to
when p is different from q.

We show that for ` coprime to q and furthermore primitive mod qk for all k > 0, there is a
fiber sequence of equivariant spectra

LKUG/qSG → (KUG)∧q
ψ`−1Ð→ (KUG)∧q ,

and we use this to calculate π0LKUG/qSG. This requires that we show that ψ` is stable after

inverting ` and also uses the fact that G is a q-group to describe the kernel of π0(ψ` − 1) in
terms of the Burnside ring. To see that ψ` is stable after inverting `, we make use of the
Atiyah–Segal character map and formulas for the Adams operations obtained by the third
author with Barthel and Berwick-Evans.

When p ≠ q, we calculate π0LKUG/pSG using the product decomposition of the category of
equivariant spectra localized away from the order of the group. In this case, the collection of
geometric fixed point functors can be used to produce an equivalence between the category
of equivariant spectra (localized away from ∣G∣) and the product over conjugacy classes of
subgroups H ⊆ G of the categories of p-local Borel-equivariant W (H)-spectra, where W (H)
is the Weyl group of H in G. There is also an algebraic incarnation of this equivalence. The
key result underlying both is that, after inverting the order of the group, the Burnside ring
factors as a product of copies of Z[1/∣G∣]. This leads to a corresponding decomposition of
the category of p-local G-Mackey functors as a product of simpler algebraic categories. We
give an explicit formula for the inverse to these equivalences. Making use of the facts that
geometric fixed points send localizations to localizations and that ΦHKUG is trivial unless
H ⊆ G is cyclic, it is reasonably straight forward to find π0LKUG/pSG in this case.

Acknowledgements. It is a pleasure to thank Tomer Schlank for his invaluable input. He
caught an error in our first version of the argument and suggested the work-around. From the
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beginning of the project he encouraged us to exploit the geometric fixed point functors. We
also thank John Greenlees for a helpful discussion concerning the geometric fixed points of
KUG. We are indebted to Mike Geline for making us aware of Schilling’s theorem. Further,
we thank William Balderrama for several specific suggestions. We also thank Anna Marie
Bohmann, Davis Deaton, and Mike Hill for helpful discussions.

1.1. Organization. We begin with a quick review of background material in Section 2. In
Section 3 we calculate the geometric fixed points of KUG. We analyze the behavior of the
Atiyah-Segal character map on a certain equivariant Bott class in Section 4 and use this in
Section 5 to show that the Adams operation ψ` lifts to a map of equivariant spectra. This
leads to the above fiber sequence, which we use to calculate π0LKUG/qSG in Section 6. We
review the p-local splitting of G-spectra and its algebraic analogue in Section 7 and use this
in Section 8 to describe LKUG/pSG when p ≠ q. In Section 9 we synthesize these calculations
in a fracture square to prove our main result, Theorem 1.1. In the final Section 10, we show
that LKUG

SG inherits a G-E∞ structure and calculate the Tambara functor structure on
π0LKUG/qSG, when G is an odd cyclic q-group.

2. Preliminaries

For the duration of the paper, we fix a finite group G. At times, we will assume it is
further an (odd) q-group. In this section we describe the algebraic and topological objects
that will play a role in the rest of the paper.

2.1. Algebra. We will make use of several commutative rings associated to G:

● Let A(G) be the Burnside ring. This is the Grothendieck group of isomorphism
classes of finite left G-sets under disjoint union. The product is induced by the
product of left G-sets.

● Let RQ(G) (resp. RO(G), RU(G)) be the rational (resp. real, complex) representa-
tion ring. This is the Grothendieck group of isomorphism classes of finite-dimensional
rational (resp. real, complex) G-representations under direct sum, with product
induced by the tensor product of G-representations.

● For Q ⊆ R ⊆ C, let Cl(G,R) be the ring of R-valued class functions on G. This is
the ring of R-valued functions on the set of conjugacy classes of G.

● Let χ∶RU(G) → Cl(G,C) be the character map. This map is injective and thus
RU(G) may be viewed as a subring of Cl(G,C).

● Let RQχ(G) be the subring of RU(G) consisting of virtual representations for which
the character takes rational values. In other words, RQχ(G) = RU(G) ∩Cl(G,Q),
where the intersection takes place in Cl(G,C).

There are canonical ring maps

A(G) → RQ(G) → RO(G) → RU(G) → Cl(G,C), (2.1)

none of which are necessarily isomorphisms. The first map is induced by the operation that
sends a finite G-set to the free rational vector space on the underlying set, the second map
is induced by base change from Q to R, the third map is induced by base change from R to
C, and the fourth map is the character map χ. The ring RQχ(G) sits in between RQ(G)
and RU(G).

Recall that a Green functor is a Mackey functor that takes values in commutative rings
and for which the restriction maps are ring maps and the transfer maps satisfy Frobenius
reciprocity. Equivalently, a Green functor is a commutative monoid in the symmetric
monoidal category of Mackey functors [Le]. Each of the constructions above extends to
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a Green functor. We will denote the associated Green functors with an underline. For
example, A is the G-Green functor defined by A(G/H) = A(H). As all of the maps in 2.1
are compatible with restriction and transfer maps, we have maps of Green functors

A→ RQ→ RO → RU → Cl. (2.2)

In fact, each of these constructions, as well as A/J , extend to (maps of) Tambara functors,
an even richer algebraic structure. However, we will not make use of this observation.

2.2. Review of G-spectra. We will work throughout in the category SpG of (genuine)
G-equivariant spectra. We will make use of several equivariant ring spectra:

● Let SG be the equivariant sphere spectrum.
● For a G-Mackey functor M , let HGM be the equivariant Eilenberg-Mac Lane

spectrum
● Let KUG be the equivariant complex K-theory spectrum.

We will use the same notation for a pointed G-space and its suspension G-spectrum. A
cofiber sequence of pointed G-spaces then gives rise to a cofiber sequence of G-spectra via
the suspension G-spectrum functor.

Given G-spectra E and X, we will write LEX for the Bousfield localization of X with
respect to E. This construction has been studied previously in [C]. If X is an E∞-ring in
equivariant spectra, then LEX is an E∞-ring in equivariant spectra. Further, we will write

X∧
p = LM(p)GX

where M(p)G = SG/p is the mod p Moore spectrum, and

Q⊗X = LHGQX ≃HGQ ∧X.

These fit together into the arithmetic fracture square

X //

��

∏pX
∧
p

��
Q⊗X // Q⊗ (∏pX

∧
p ),

(2.3)

which is a homotopy pullback of equivariant spectra. If X has the structure of an E∞-ring
G-spectrum, then this is a homotopy pullback of E∞-ring G-spectra.

For a G-spectrum X, the Mackey functor πn(X) has values

πn(X)(G/H) = πHn (X) = πn(XH),

where XH is the fixed-point spectrum, as in Section 2.3 below. Some of the Green functor-
valued homotopy groups of some of the equivariant spectra above are well-known:

● π0SG ≅ A.
● π∗KUG ≅ RU[β,β−1], where β is in degree 2.

We will also make use of the category SphG of Borel G-equivariant spectra. This is
the localization of SpG at the set of underlying equivalences. The localization functor
SpG Ð→ SphG has both a left and a right adjoint. The left adjoint is given by X ↦ EG+ ∧X,
while the right adjoint is X ↦ F (EG+,X).
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2.3. Fixed points and geometric fixed points. For any subgroup H ≤ G, there is a
restriction-induction adjunction

SpG SpH
↓GH

↑GH

between the category of G-spectra and H-spectra. According to the Wirthmuller isomorphism,
restriction is both left and right adjoint to induction.

Suppose that N ⊴ G is a normal subgroup. Then there is an adjoint pair

SpG/N SpG,
infGG/N

(−)N
(2.4)

where infGG/N is inflation and (−)N is the categorical N -fixed points functor. We will also
heavily employ the geometric fixed points functor, which fits into an adjunction as

SpG SpG/N .
ΦN

φ∗N

(2.5)

Denote by F[N] the family of subgroups of G which do not contain N , and let ẼF[N] be
the cofiber of EF[N]+ Ð→ SG. Then the geometric fixed points functor is

ΦN(X) = (ẼF[N] ∧X)N ,

while the geometric inflation functor is

φ∗N(Y ) = ẼF[N] ∧ infGG/NY.

In the case N = G, then F[G] is the family of proper subgroups, which we will write as PG.
Both fixed point functors can be extended to the case of a not-necessarily-normal subgroup
H ≤ G by composing with the restriction-induction adjunction

SpG SpNGH ,
↓GNGH

↑GNGH

where NGH ≤ G is the normalizer of H in G.

3. Geometric fixed points of KUG

In this section, we will compute the geometric fixed points of KUG at q-subgroups where
q is a prime, following [G].

Notation 3.1. As usual, we will use ρ = ρG to denote the complex regular representation of
G.

The categorical fixed points of KUG were calculated by Segal.

Proposition 3.2. [Seg1, Proposition 2.2] There is an equivalence of homotopy commutative
ring spectra (KUG)H ≃KU ⊗RU(H).

In other words, we have that the categorical fixed points are a free KU -module, of rank
equal to the number of conjugacy classes in G.

We begin by computing geometric fixed points with respect to the cyclic subgroups
Cqk ≤ G. We will see below in Proposition 3.10 that if H ≤ G contains a non-cyclic q-group,
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then ΦH(KUG) ≃ ∗, so that cyclic groups are the only case of interest. We denote by

RU(Cqk) the quotient

RU(Cqk) = RU(Cqk)/ρ(k − 1), (3.3)

where ρ(k − 1) is the pullback of ρCq ∈ RU(Cq) along the quotient map Cqk Ð→ Cq.

Fix an isomorphism RU(Cqk) ≅ Z[x]/(xq
k

−1), where x denotes a nontrivial 1-dimensional
irreducible representation of Cqk . In this ring, the regular representation is given by

ρC
qk

= xq
k−1 + ⋅ ⋅ ⋅ + x + 1.

We can identify ρ(k − 1) under this isomorphism as

ρ(k − 1) = x(q−1)qk−1 + ⋅ ⋅ ⋅ + xq
k−1

+ 1,

and the defining relation for RU(Cqk) splits as the product

xq
k

− 1 = (xq
k−1

− 1) ⋅ ρ(k − 1). (3.4)

We see that RU(Cqk) is a free abelian group of rank (q − 1)qk−1.

Proposition 3.5. Let Cqk ⊆ G be a cyclic q-subgroup of G. There is an equivalence of
KU -modules

ΦCqkKUG ≃KU ⊗RU(Cqk)[
1

q
].

Proof. As we are only considering the underlying spectrum of the geometric fixed points, as
opposed to the more equivariantly sophisticated variant from (2.5), we may without loss of

generality suppose that G = Cqk . Recall that one model for the space ẼPG of Section 2.3 is

ẼPG = S∞V = hocolimj S
jV ,

where V is a real G-representation such that V G = 0 and V H ≠ 0 for all proper subgroups
H. For example, we may take V = ρR = ρR − 1, the reduced real regular representation. It
follows that for any G-spectrum X, the geometric fixed points can be computed as

ΦGX = (S∞V ∧X)G ≃ hocolimj(SjV ∧X)G,
The maps in the colimit are given by multiplication by the Euler class eV ∈ π−V (SG) of V
on π⋆X.

Now, if V is the underlying 2n-dimensional real representation of an n-dimensional complex
representation, then equivariant Bott periodicity (see [At] or [M, Section XIV.4]) gives a
canonical equivalence of equivariant spectra ΣVKUC

qk
≃ Σ2nKUC

qk
. If q is odd, then V = ρR

underlies a complex representation of dimension qk−1
2

. On the other hand, in the case of
C2, ρR = σR is the 1-dimensional sign representation, but 2σR underlies the 1-dimensional
complex sign representation σC, and so we take V = 2σR in this case. Similarly, for C2k , we
take V = 2ρR. In either of these cases, the Euler class may be identified with a Z-graded
class, and the geometric fixed points may be rewritten as

ΦCqkKUC
qk

≃ hocolimj Σ2jn(KUC
qk

)Cqk .

According to Proposition 3.2 and the 2-fold Bott periodicity of KU , this is equivalent to

ΦCqkKUC
qk

≃ hocolimjKU ⊗RU(Cqk),

where the maps in the colimit are multiplication by the Euler class of V , thought of as a
class in degree 0 via Bott periodicity. In other words, we are inverting the image of the Euler
class in KU ⊗RU(Cqk).
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Under the fixed isomorphism RU(Cqk) ≅ Z[x]/(xq
k

− 1) from above, the reduced complex
regular representation can be identified as

ρ = ρC
qk

= xq
k−1 + ⋅ ⋅ ⋅ + x.

Then

e(ρ) = e
⎛
⎝

qk−1

∑
i=1

xi
⎞
⎠
=
qk−1

∏
i=1

(xi − 1). (3.6)

The maps in the colimit computing the geometric fixed points are given by multiplying by
this Euler class, so it remains to understand the effect of inverting this class in RU(Cqk).
We carry this out in Lemma 3.7 and Lemma 3.9. �

Let V and W be complex representations with KU -theory Euler classes e(V ) and e(W )
in RU(G). Recall that e(V ⊕W ) = e(V ) ⋅ e(W ), and further, if V is 1-dimensional, then
e(V ) = V − 1.

Lemma 3.7. The localization RU(Cqk)[ 1
e(ρ) ] is isomorphic to RU(Cqk)[ 1

xqk−1−1
].

Proof. Since xq
k−1

−1 is a factor of e(ρ) according to (3.6), it is clear that inverting the Euler

class also inverts xq
k−1

− 1.
Conversely, (3.4) implies that there is an isomorphism

RU(Cqk) [
1

xqk−1 − 1
] ≅ Z[x]/ρ(k − 1) [ 1

xqk−1 − 1
] . (3.8)

For any j < k − 1, the class xq
j

− 1 divides xq
k−1

− 1 and therefore becomes invertible

after inverting xq
k−1

− 1. It remains to consider xi − 1, where i is prime to q. Since
xi − 1 = (x− 1)(xi−1 + ⋅ ⋅ ⋅ + 1), and x− 1 has already been inverted, it suffices by (3.8) to show
that ρi = xi−1 + ⋅ ⋅ ⋅ + 1 is invertible in Z[x]/ρ(k − 1) for i prime to q. This follows from the
fact that if i is prime to q then ρi and ρ(k − 1) do not share any common roots (over C). �

Lemma 3.9. The localization RU(Cqk)[ 1

xqk−1−1
] is isomorphic to

RU(Cqk) [
1

q
] ≅ Z [x, 1

q
] /(1 + xq

k−1

+ ⋅ ⋅ ⋅ + x(q−1)qk−1),

where RU(Cqk) is as in (3.3).

Proof. According to (3.8), it suffices to show that in RU(Cqk) ≅ Z[x]/ρ(k − 1), inverting

xq
k−1

−1 agrees with inverting q. For simplicity, we write y = xq
k−1

in the rest of this argument.
On the one hand, (y − 1)q ≡ yq − 1 (mod q). Since yq − 1 = 0 in RU(Cqk), we conclude

that (y − 1)q is divisible by q in RU(Cqk) (and therefore also in the quotient RU(Cqk)). It
follows that inverting y − 1 also inverts q.

On the other hand, we can check directly that

(1 − y) ⋅ (yq−2 + 2yq−3 + 3yq−4 + ... + (q − 2)y + (q − 1)) = −ρ(k − 1) + q = q

in RU(Cqk) ≅ Z[x]/ρ(k − 1). Therefore inverting the integer q also inverts y − 1 in the ring
Z[x]/ρ(k − 1). �

We now study the geometric fixed points with respect to a non-cyclic q-subgroup.

Proposition 3.10. Suppose that H ≤ G is a non-cyclic q-subgroup. Then ΦHKUG ≃ ∗.
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Proof. By restriction, it suffices to consider the case H = G. If G is not cyclic, then it admits
a surjection to Cq ×Cq. This induces a ring map ΦCq×CqKUCq×Cq Ð→ ΦGKUG as follows.

More generally, given a surjection qN ∶GÐ→ G/N , there is a canonical map of G-spaces

q∗N ẼPG/N Ð→ ẼPG. Moreover, as KU is a global ring spectrum, it comes equipped with

a map of ring G-spectra infGG/NKUG/N Ð→KUG (see [LMSM, II.8.5]). Adjoint to this is a

map of ring G/N -spectra ξ∶KUG/N Ð→ (KUG)N . Then the desired map on geometric fixed
points is

ΦG/NKUG/N = (ẼPG/N ∧KUG/N)G/N (ẼPG ∧KUG)G = ΦGKUG,

(ẼPG/N ∧ (KUG)N)G/N (q∗ẼPG/N ∧KUG)G
id∧ξ

∼

where the equivalence on the second row is the projection formula (see [BS, 2.(C)] or
[HK, Lemma 2.13]).

It now remains to show that ΦCq×CqKUCq×Cq ≃ ∗. The geometric fixed points are
computed by inverting the Euler classes of nontrivial irreducible representations of Cq ×Cq
in KU ⊗RU(Cq ×Cq). Now

RU(Cq ×Cq) ≅ Z[x, y]/(xq − 1, yq − 1).

According to Lemma 3.9, inverting the Euler class x − 1 gives

RU(Cq ×Cq) [
1

x − 1
] ≅ Z [x, y, 1

q
] /(xq−1 + ⋅ ⋅ ⋅ + x + 1, yq − 1).

In this localization, x is a qth root of unity, so that

yq − 1 =
q−1

∏
i=0

(y − xi) = x
q(q−1)

2

q−1

∏
i=0

(yxq−i − 1) =
q−1

∏
i=0

e(yxq−i).

Thus inverting the Euler classes e(yxq−i) will invert yq − 1, which is zero in RU(Cq ×Cq). It
follows that the localization is zero. �

Remark 3.11. In the proposition above, the map of ring spectra ΦCq×CqKUCq×Cq Ð→
ΦGKUG is strictly more than we need to prove the result. It suffices to know that the
Euler classes inverted in RU(Cq ×Cq) in the formula for π0(ΦCq×CqKUCq×Cq) are inverted in

RU(G) in the formula for π0(ΦGKUG). Given this, it follows that π0(ΦGKUG) = 0, which
implies that ΦGKUG ≃ ∗ as it is a commutative ring spectrum.

4. The character of the equivariant Bott classes

Let V be a finite-dimensional complex representation of the finite group G. The Thom
isomorphism in equivariant complex K-theory is a canonical isomorphism of RU(G)-modules

KU0
G(∗) ≅ K̃U

0

G(SV ),

where SV is the representation sphere associated to V . This isomorphism is given by
multiplication by the equivariant Bott class βV (see [Seg1, Section 3] and [M, Section XIV.4]).

Thus K̃U
0

G(SV ) is a free module of rank one over RU(G) on the class βV :

K̃U
0

G(SV ) ≅ RU(G){βV }.
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This algebraic statement is a consequence of the topological statement of Bott periodicity in
the proof of Proposition 3.5. Given two finite dimensional complex G-representations V and
W , the canonical isomorphism of RU(G)-modules

K̃U
0

G(SV ) ⊗RU(G) K̃U
0

G(SW ) ≅ K̃U
0

G(SV ⊕W )

sends βV ⊗ βW to βV ⊕W .
Let ρG be the complex regular representation of G and let

χ∶ K̃U
0

G(SρG) Ð→∏
[g]
H̃0((SρG)g,C[β,β−1])

be the Atiyah–Segal character map [AS] applied to the finite G-CW complex SρG .

Proposition 4.1. The image of βρG under the Atiyah–Segal character map χ is the “class
function” χ(βρG) sending

[g] ↦ (∣g∣β)∣G∣/∣g∣.

Proof. Fix a conjugacy class [g] ⊆ G and g ∈ [g]. We will describe the part of the character
map

χ∶ K̃U
0

G(SρG) → H̃0((SρG)g,C[β,β−1])
associated to the conjugacy class [g]. Assume ∣g∣ = k, let m = ∣G∣/k, and let Z/k → G pick
out g. Note that (SρG)g is homeomorphic to S2m. The Atiyah–Segal character map factors
in the following way:

K̃U
0

G(SρG) → K̃U
0

Z/k(SρG)

→ K̃U
0

Z/k((SρG)g)

≅ RU(Z/k) ⊗ K̃U
0
((SρG)g)

→ C⊗ K̃U
0
((SρG)g)

≅ H̃0((SρG)g,C[β,β−1]),

where the first map is induced by restriction along Z/k → G picking out g, the second map
is restriction along the inclusion (SρG)g → SρG , the following isomorphism is due to the fact
that the Z/k-action on the fixed points is trivial, and the next map is induced by any map
RU(Z/k) → C picking out a primitive kth root of unity.

We will trace βρG through these maps. There is a commutative diagram

K̃U
0

Z/k(SρG) ≅ // K̃U
0

Z/k(SmρZ/∣g∣)
≅ //

��

K̃U
0

Z/k(SmρZ/k) ⊗RU(Z/k) K̃U
0

Z/k(S2m)

��

K̃U
0

Z/k((SmρZ/k)Z/k)
≅ // K̃U

0

Z/k(S0) ⊗RU(Z/k) K̃U
0

Z/k(S2m).

We may trace βρG through this diagram:

βρG
� // βmρZ/k � // βmρZ/k ⊗ βm_

��
e(mρZ/k)βm e(mρZ/k) ⊗ βm.

�oo
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As restriction along Z/k → G sends ρG to mρZ/k, the top left isomorphism sends βρG to βmρZ/k .

The right vertical mapping follows from the fact that the element βmρZ/k ∈ K̃U
0

Z/k(SmρZ/k)
is the Thom class for mρZ/k and the vertical restriction map is restriction along the zero
section.

Finally, the map RU(Z/k) → C sends the Euler class e(mρZ/k) to km. This is because

e(mρZ/k) = e(ρZ/k)m and, after fixing an isomorphism RU(Z/k) ≅ Z[x]/(xk − 1), we have

e(ρZ/k) =
k−1

∏
i=1

(xi − 1).

Setting x = ζk, we get k as this is the same value we get by setting y = 1 in (1−yk)/(1−y). �

5. Stable Adams operations

Throughout this section, we fix an odd prime q and assume that G is a q-group. Further,
let ` be a primitive root modulo ∣G∣. This implies that, for any g ∈ G, the subgroup generated
by g is equal to the subgroup generated by g`. Also, recall [At2, Proposition 3.2.2] that the
action of the Adams operation ψ` on the ordinary Bott class β is given by ψ`(β) = `β.

The Adams operation ψ`∶ K̃U
0

G(SρG) → K̃U
0

G(SρG) extends to a ring endomorphism on
the target of the Atiyah–Segal character map:

ψ`∶∏
[g]
H̃0((SρG)g,C[β,β−1]) →∏

[g]
H̃0((SρG)g,C[β,β−1]).

An explicit formula for this map was given in [BBES, Corollary 4.5]. Applying this formula
to Proposition 4.1 gives

ψ`(χ(βρG)) ∶ [g] ↦ (∣g`∣`β)∣G∣/∣g`∣. (5.1)

Our goal now is to compute ψ`(βρG) under the hypotheses above. Compatibility of the
character map with this formula for ψ` means that ψ`(χ(βρG)) = χ(ψ`(βρG)). Since ∣g∣ = ∣g`∣,
by Proposition 4.1 and (5.1) we have

χ(ψ`(βρG)) = `∣G∣/∣●∣χ(βρG)

where `∣G∣/∣●∣ sends [g] to `∣G∣/∣g∣.
Since the Atiyah-Segal character map χ is injective (as the RU(G)-modules are free), it

suffices to find the finite dimensional G-representation with character `∣G∣/∣●∣. Consider the
permutation representation

`⊗G = C{Set(G, `)},
where ` is a set of size ` with trivial G-action. Then, for g ∈ G, the g-fixed points of the G-set

Set(G, `) = `G are `G/⟨g⟩. Since the character of a permutation representation counts the

cardinality of the fixed points, χ(`⊗G) = `∣G∣/∣●∣. We have proved the following proposition:

Proposition 5.2. Assume that G is an odd q-group and ` is a primitive root modulo ∣G∣.
Let

ψ`∶ K̃U
0

G(SρG) → K̃U
0

G(SρG)
be the `th Adams operation. Then

ψ`(βρG) = `⊗GβρG .

It follows from [tD, Proposition 2.1.2] that, when ` is coprime to ∣G∣, `⊗G is an invertible
element in RU(G)[`−1].
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Proposition 5.3. Assume that G is an odd q-group and ` is a primitive root modulo ∣G∣.
Then the Adams operation

ψ`∶RU(G)[`−1] → RU(G)[`−1]
extends to a map of equivariant ring spectra

ψ`∶KUG[`−1] →KUG[`−1].

Proof. Since ψ` is a cohomology operation and Z × BGU represents equivariant complex
K-theory, ψ` gives a map of G-spaces

ψ`∶Z ×BGU → Z ×BGU.
Since ψ` is a ring map on π0, it induces a map ψ`∶ (Z ×BGU)[`−1] → (Z ×BGU)[`−1]. To
show that ψ` induces a map of equivariant cohomology theories, it suffices to show that ψ`

can be extended to commute (up to homotopy) with the structure map for the equivariant
spectrum:

SρG ∧ (Z ×BGU)[`−1] //

1∧ψ`

��

(Z ×BGU)[`−1]

f

��
SρG ∧ (Z ×BGU)[`−1] // (Z ×BGU)[`−1].

The structure map
SρG ∧ (Z ×BGU)[`−1] → (Z ×BGU)[`−1]

is induced by the equivariant Bott map βρG ∶SρG → (Z×BGU)[`−1]. To find f such that the
square commutes, it suffices to understand the two ways of going around the square on the
universal map u∶Z ×BGU → Z ×BGU[`−1].

The two ways of going around the square give us βρGψ`(u) and f(βρGu). As ` has been
inverted, we may set f = ψ`/`⊗G, then

f(βρGu) = ψ`(βρGu)/`⊗G

= ψ`(βρG)ψ`(u)/`⊗G

= `⊗GβρGψ`(u)/`⊗G

= βρGψ`(u).
�

6. The fiber of ψ` − 1

The goal of this section is to prove Proposition 6.3 and Proposition 6.8, identifying the
fiber of the map of equivariant spectra

(KUG)∧q
ψ`−1Ð→ (KUG)∧q (6.1)

and identifying π0 of the fiber when G is an odd q-group.
We begin with a lemma:

Lemma 6.2. If R is an equivariant ring spectrum, then the p-completion R∧
p is R/p-local.

Proof. The usual proof goes through in the genuine equivariant setting. Let X be an R/p-
acyclic G-spectrum, so that X ∧R/p ≃ X ∧R ∧MG(p) ≃ ∗. Then X ∧R is MG(p)-acyclic.
Since R∧

p is MG(p)-local, we have

[X,R∧
p]G ≃ [X ∧R,R∧

p]GR-mod ⊆ [X ∧R,R∧
p]G = 0.
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�

Proposition 6.3. For G an odd q-group and ` a primitive root mod ∣G∣ = qk there is a fiber
sequence

LKUG/qSG → (KUG)∧q
ψ`−1Ð→ (KUG)∧q . (6.4)

Proof. The canonical map of equivariant ring spectra η∶SG → (KUG)∧q factors through
LKUG/qSG, and the induced map LKUG/qSG → (KUG)∧q is a map of rings. We wish to

identify LKUG/qSG with the fiber of ψ` − 1.

To this end, let FG denote the fiber of ψ` − 1. Since (KUG)∧q is a q-complete equivariant
commutative ring spectrum, it is KUG/q-local by Lemma 6.2. It follows that the fiber FG
is KUG/q-local. To identify LKUG/qSG with FG, we wish to show that the canonical map

SG → FG is an equivalence after smashing with KUG/q (the map exists because (ψ` −1)η = 0
and is canonical because π1(KUG)∧q vanishes). That is, we want the map

KUG/q →KUG/q ∧ FG
to be an equivalence. Since the geometric fixed point functors {ΦH ∣H ⊆ G} are jointly
conservative and symmetric monoidal, it suffices to check that

ΦHKUG/q → ΦHKUG/q ∧ΦHFG

is an equivalence of spectra for each H ⊆ G. If H ⊆ G is not cyclic, then Proposition 3.10
implies that ΦHKUG/q ≃ 0. When H ⊆ G is nontrivial and cyclic, Proposition 3.5 implies
that q is invertible in ΦHKUG, so again ΦHKUG/q ≃ 0. Thus we only need to check the
case H = e, which is the classical statement [Bo, Section 4] that the KU/q-local sphere is
the fiber of ψ` − 1∶KU∧

q →KU∧
q . �

Remark 6.5. If we complete at p ≠ q, the strategy above does not work. For a choice of `
such that ψ`∶ (KUG)∧p → (KUG)∧p is stable, let FG = fib(ψ` − 1). By applying the geometric
fixed points functor for cyclic subgroups of G, one can show that the canonical map

(KUG)/pÐ→ FG ∧ (KUG)/p
is not an equivalence, and thus FG is not the (KUG)/p-local sphere.

Remark 6.6. Another approach to Proposition 6.3 was suggested by Balderrama (see also
[B]). One can show that the fiber sequence is the image of the fiber sequence

LKU/qS →KU∧
q →KU∧

q

under the functor from spectra to G-spectra sending X to the Borel equivariant spectrum
for the trivial G-action on X. One reason this works is because (KUG)∧q is Borel-complete if
G is a q-group. This follows from the fact that there is a canonical isomorphism

(KU∧
q )0(BG) ≅ RU(G) ⊗Zq,

for G a q-group.

We now address the algebraic analogue of Proposition 6.3, and give a description of the
kernel of π0(ψ` − 1)∶RU → RU in terms of the Burnside Green functor A. We will abuse
notation and write ψ` − 1 for both π0(ψ` − 1) and π0(ψ` − 1).

Recall that linearization defines a canonical map A→ RU . This map is induced by the
map sending a finite G-set to the associated complex permutation representation. Let

J = ker(A→ RU).



ON THE KUG-LOCAL EQUIVARIANT SPHERE 13

Using character theory, as in [Sz, Proposition 3.8], it is easy to see that J(G/H) = J(H) is
the ideal of A(H) generated by virtual H-sets [X] with the property that ∣Xh∣ = 0 for h ∈H.
Thus we have a canonical injective map of Green functors

A/J ↪ RU.

Note that J is also the kernel of the canonical map A→ RQ.

Proposition 6.7. For G an odd q-group and ` a primitive root mod ∣G∣ = qk, we have
isomorphisms of Green functors

A/J ≅ RQ ≅ ker(ψ` − 1∶RU → RU).

Proof. First, the Ritter–Segal theorem [Ri,Seg2], implies that, since G is a q-group, we have
an isomorphism of Green functors A/J ≅ RQ. We will show that

RQ ≅ ker(ψ` − 1∶RU → RU).
It suffices to show that we have an isomorphism of rings

RQ(G) ≅ ker(ψ` − 1∶RU(G) Ð→ RU(G)).
The kernel

ker(ψ` − 1)∶RU(G) → RU(G)
consists of the fixed points for the action of the ring endomorphism ψ` on RU(G).

[Ser, Proposition 33] implies that

RU(G) ≅ RQ(ζqk)(G).

By assumption, ` is a generator of (Z/qk)×. For a G-representation ρ in RQ(ζqk)(G),
[tD, Proposition 3.5.2.(i)] implies that the `th Adams operation ψ` acts on the character
χ(ρ) through the action of

` ∈ (Z/qk)× ≅ Gal(Q(ζqk)/Q)
on the coefficients. It follows that there is an isomorphism

(RQ(ζqk)(G))ψ
`

≅ RQχ(G),
where RQχ(G) = χ(RU(G)) ∩Cl(G,Q) ⊂ Cl(G,C). Now Schilling’s theorem [Re, Theorem
41.9] applies to RQχ(G) since G is an odd q-group and implies that RQ(G) ≅ RQχ(G). �

We are now prepared to prove the following result:

Proposition 6.8. Let G be an odd q-group. Then there is an isomorphism of Green functors

π0LKUG/qSG ≅ (A/J)∧q ,
and π1LKUG/qSG is finite.

Proof. With the fiber sequence (6.4) in hand, we can easily calculate π0 (LKUG/qSG) and

π1 (LKUG/qSG). Since π1(KUG)∧q = 0, we have

π0 (LKUG/qSG) ≅ ker(ψ` − 1) ≅ (A/J)∧q
by Proposition 6.7.

Now
π1 (LKUG/qSG) ≅ coker (ψ` − 1∶π2(KUG)∧q → π2(KUG)∧q ) .

To see that π1LKUG/qSG is finite, it suffices to show that ψ` − 1 is injective on π2(KUG)∧q ≅
RU∧

q{β}, where β is the ordinary Bott class. Since ψ` − 1 is base changed along the flat
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extension Z→ Zq from the action of ψ` − 1 on RU{β}, it suffices to show that the action on
RU{β} is injective. Since this action is levelwise, we may show that

ψ` − 1∶RU(G){β} → RU(G){β}
is injective. Since RU(G) is a finitely generated free Z-module, we may base change to C
and work with class functions, giving us

ψ` − 1∶Cl(G){β} → Cl(G){β}.
We wish to show that this map is an isomorphism. We will consider the basis consisting
of indicator functions. The indicator functions are permuted by the action of ψ`. If the
associated permutation matrix is S, then ψ` acts on Cl(G){β} by `S. Then we are interested
in the determinant of the integer matrix `S − Id in which ` ≥ 2. Since this matrix is invertible
mod `, the determinant is nonzero. �

7. The splitting of G-spectra, away from the order of the group

For the duration of this section, we fix a prime p not dividing the order of the finite
group G. We review the fact that the p-local G-equivariant stable homotopy category splits
as a product of Borel-equivariant homotopy categories. This essentially appeared first in
[GM, Appendix A], and also more recently in [Ba,Li], and explicitly in [W]; as we will need
an explicit description of this splitting, we prove the result in full.

This splitting arises from a corresponding splitting of the p-local Burnside ring of G [K].
The p-local splitting of A(G) arises from the existence of certain idempotents eGH ∈ A(G)(p),
one for each conjugacy class of subgroups. The idempotent eGH is of the form

eGH = 1

∣WG(H)∣
G/H + ∑

(K)
cHKG/K, (7.1)

where K runs over conjugacy classes of G that are properly subconjugate to H and cHK ∈ Z(p).
Given the isomorphism π0(SG) ≅ A(G), this allows us to define, for any p-local G-spectrum

X, the G-spectrum eGHX as the telescope

eGHX = hocolim(X
eGHÐ→X

eGHÐ→X
eGHÐ→ . . . ).

When H = {1} is the trivial subgroup, this idempotent is smashing with the free G-space

EG+. To see this consider the cofiber sequence EG+ Ð→ (G/G)+ Ð→ ẼG of based G-spaces,

which gives rise to the cofiber sequence of G-spectra EG+ Ð→ SG Ð→ ẼG. The map eG1 is
the composition of maps of G-spectra

SG

tr
∣G∣Ð→ G+ Ð→ SG. (7.2)

Since the underlying spectrum of ẼG is contractible, it follows that eG1 ẼG ≃ ∗ and eG1 SG ≃
eG1 EG+. However, on EG+, the composition (7.2) is the identity since EG has only free cells,
and we conclude that eG1 SG ≃ EG+. We prove a generalization of this equivalence to H ⊆ G
in Proposition 7.4.

Theorem 7.3 ([Ar,GM,Ba,Li,W]). Let p be a prime not dividing the order of the group G.
Then the collection of geometric fixed point functors, as (H) runs over conjugacy classes of
subgroups, yields a symmetric monoidal equivalence of categories

Ho SpG(p)
(ΦH)
ÐÐÐ→ ⊕

(H)
Ho Sp

hWG(H)
(p) .
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Proof. The fact that the collection of geometric fixed point functors is fully faithful is stated
as [GM, Theorem A.16], for the case of rationalization. However, the argument is based on
[Ar], which provides the needed results at the level of p-localization, as we now recall.

We have the chain of isomorphisms

[X,Y ]Gp ≅ ⊕
(H)

[eGHX,eGHY ]Gp ≅ ⊕
(H)

[eNHH X,eNHH Y ]NHp

≅ ⊕
(H)

[eWH
1 ΦHX,eWH

1 ΦHY ]WH
p

≅ ⊕
(H)

[EWH+ ∧ΦHX,EWH+ ∧ΦHY ]WH
p

≅ ⊕
(H)

[ΦHX,ΦHY ]hWH
p .

Here, the second isomorphism is given by [Ar, Theorem 3.5] and the third by [Ar, Theorem 4.7]
To see that the collection of geometric fixed point functors is essentially surjective, we

provide, for each Y ∈ SphWH
p , a G-spectrum whose K-geometric fixed points vanish unless

K =H, up to conjugacy, and whose H-geometric fixed points is Y .
For a subgroup H ≤ G, denote by F[H] the family of subgroups of NH which do not

contain H. Since H is normal in NH, this is indeed a family, meaning that it is closed under
subgroups and conjugation. We then claim that the G-spectrum

X =↑GNH (ẼF[H] ∧EWH+ ∧ Y )

has the desired fixed point properties.

First note that the NH-space ẼF[H] ∧EWH+ satisfies

(ẼF[H] ∧EWH+)
K

≃
⎧⎪⎪⎨⎪⎪⎩

S0 K =H
∗ else.

We will write E⟨H⟩ = ẼF[H] ∧EWH+.
Now for any NH-spectrum Z, the double coset formula gives

↓GNK↑GNH Z ≃ ⋁ ↑NKNK∩NHg cg ↓NHNKg−1∩NH Z

≃ ⋁ ↑NKNK∩NHg↓NH
g

NK∩NHg cg−1Z.

Then

ΦK( ↓GNK↑GNH E⟨H⟩ ∧ Y ) ≃ ⋁ΦK( ↑NKNK∩NHg↓NH
g

NK∩NHg cg−1E⟨H⟩ ∧ Y )

≃ ⋁ ↑WK
NK∩NHg

K

ΦK( ↓NH
g

NK∩NHg cg−1E⟨H⟩ ∧ Y )

≃
⎧⎪⎪⎨⎪⎪⎩

Y K =Hg

∗ else.

This verifies that the collection (ΦH) of geometric fixed point functors is essentially surjective.
Finally, the equivalence is symmetric monoidal simply because each geometric fixed point
functor is symmetric monoidal. �

In the proof of Theorem 7.3, we employed the p-local idempotents eGH . We will use the
following description of the interaction of the idempotents with fixed points.
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Proposition 7.4. For H ≤ G, X ∈ SpG(p), and p not dividing the order of G, we have

(eGHX)H ≃ ΦH(X)

in the p-local Borel-equivariant category Ho Sp
hWG(H)
(p) .

Proof. Since fixed points with respect to H are computed by first restricting the G-action to
the action of the normalizer NG(H), we may without loss of generality assume that H is
normal in G and that WG(H) = G/H.

Recall that ΦH(X) = (ẼF[H] ∧X)H . We will show that

E(G/H)+ ∧ eGHX ≃ E(G/H)+ ∧ ẼF[H] ∧X

in SpG(p). The result then follows by passage to H-fixed points, since H acts trivially on

E(G/H). Note that, as a G-space, we can write E(G/H) = EFH , where FH is the family of
subgroups of H. Then

EF[H] ×E(G/H) ≃ E(F[H] ∩ FH) ≃ EPH ,

where PH is the family of proper subgroups of H.
Consider the cofiber sequence

(EF[H] ×E(G/H))
+
∧X Ð→ E(G/H)+ ∧X Ð→ ẼF[H] ∧E(G/H)+ ∧X.

Again, the left term is (EPH)+ ∧X, which is annihilated by the idempotent eGH , since all
cells of EPH are induced from proper subgroups of H. It follows that we have equivalences

E(G/H)+ ∧ eGH(X) = eGH (E(G/H)+ ∧X) ≃ eGH (ẼF[H] ∧E(G/H)+ ∧X) .

Since the restriction of ẼF[H] to proper subgroups of H is contractible, it follows from (7.1)

that the idempotent eGH is given on ẼF[H] by smashing ẼF[H] with the composition

SG

tr
[G∶H]ÐÐÐ→ G/H+ Ð→ SG. (7.5)

On the other hand, on E(G/H)+, the composition (7.5) is the identity since it only has cells
of type G/H. We conclude that

eGH (ẼF[H] ∧E(G/H)+ ∧X) ≃ ẼF[H] ∧E(G/H)+ ∧X.

�

Recall that the Burnside ring A(K) acts on M(G/K) for all K ⊆ G, so A(G) acts
on M(G/K) by restriction. For M ∈ Mack(G)(p), we define eGHM by (eGHM)(G/K) =
eGH(M(G/K)).

The algebraic analogue of Theorem 7.3, which follows from the argument of [GM, Theorem
A.9 and Proposition A.12], and [BK, Corollary 7.3] for the monoidal structure, is as follows;

Proposition 7.6. Let p be a prime not dividing the order of the group G. Then the map

Mack(G)(p)
(VH)
ÐÐÐ→ ⊕

(H)
ModZ(p)[WH]

is a symmetric monoidal equivalence of categories, where VH(M) ∶= eGHM(G/H).

Here the monoidal structure on ModZ(p)[WH] is given by the underlying tensor product of

Z(p)-modules, equipped with the diagonal action of WG(H).
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Remark 7.7. The symmetric monoidal equivalence above yields an analogous splitting of
the category of Green functors localized at the prime p

Green(G)(p) Ð→ ⊕
(H)

CAlg(ModZ(p)[WH]).

However, following the discussion after [BK, Corollary 7.3], we note that this idempotent
splitting does not preserve the structure of a Tambara functor.

Moreover, we have the following comparison.

Proposition 7.8. The diagram

Ho SpG(p) ⊕
(H)

Ho Sp
hWG(H)
(p)

Mack(G)(p) ⊕
(H)

ModZ(p)[WGH]

(ΦH)
∼

πn πn

(VH)
∼

(7.9)

commutes.

Proof. Let eGH SpG(p) ⊆ SpG(p) be the essential image of the functor eGH . According to Proposi-
tion 7.4, the horizontal maps factor as in the diagram

Ho SpG(p) ⊕
(H)

Ho eGH SpG(p) ⊕
(H)

Ho Sp
hWG(H)
(p)

Mack(G)(p) ⊕
(H)

eGH Mack(G)(p) ⊕
(H)

ModZ(p)[WGH],

πn

(−)H

πn πn

evG/H

where evG/H(M) =M(G/H). The first square commutes by construction, and the second
square commutes by the definition of πn. �

We will also need the following alternative description of the functor VH , as suggested
immediately preceding [Sch, 3.4.22].

Proposition 7.10. Let p be a prime not dividing the order of the group G. For H ≤ G
and M ∈ Mack(G), let tHM ≤M(G/H) be the subgroup generated by transfers from proper
subgroups of H. Assume further that M ∈ Mack(G)(p). Then the projection homomorphism

M(G/H) ↠ eGHM(G/H) = VH(M) induces an isomorphism M(G/H)/tHM ≅ VH(M).

Proof. The claim amounts to the statement that the kernel of the surjection M(G/H) ↠
VH(M) is precisely tHM . We first observe that if K is (conjugate to) a proper subgroup of
H, then the restriction ↓GK (eGH) ∈ A(K)(p) is 0. This implies that eGHM(G/K) = 0 and the
commuting square

M(G/H) eGHM(G/H)

M(G/K) eGHM(G/K)

shows that the image of the transfer M(G/K) →M(G/H) lies in the kernel. Allowing K to
vary over proper subgroups, we conclude that tHM is contained in the kernel.
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On the other hand, using that M ∈ Mack(G)(p) splits as M(G/H) ≅ ⊕(K) e
G
KM(G/H),

the kernel of the projection is a direct sum with terms eGKM(G/H), where K is not conjugate
to H. It remains to show that each of these lies in tHM . If H is contained in K, up to
conjugacy, then the term eGKM(G/H) vanishes. On the other hand, if K is (conjugate to)
a proper subgroup of H, then since eGK ∈ A(G)(p) is induced up from K, the Frobenius

reciprocity axiom shows that eGKM(G/H) lies in the image of the transfer from the proper
subgroup K. �

This description has the following consequence.

Proposition 7.11. Let p be a prime not dividing the order of G, fix a p-local abelian group
T and let M ∈ Mack(G)(p). Then

VH(M) ≅
⎧⎪⎪⎨⎪⎪⎩

T with trivial WGH-action H cyclic

0 else,

if and only if M ≅ A/J ⊗ T .

Proof. Since the p-local marks homomorphism

A(G)(p) = A(G) ⊗Z(p) Ð→ ∏
(H)≤G

Z(p)

is an isomorphism [tD, Chapter 5] and T ≅ Z(p) ⊗ T , we have that

( (A/J) ⊗ T)(G/K) ≅ ∏
(H)≤K cyclic

T,

with restrictions and transfers the natural projections and inclusions, respectively. Proposi-
tion 7.10 then implies that

VH(A/J ⊗ T) ≅
⎧⎪⎪⎨⎪⎪⎩

T H cyclic

0 else.

Since (VH) is fully faithful by Proposition 7.6, the result follows. �

Combining Proposition 7.8 and Proposition 7.11 yields the following.

Corollary 7.12. Let X ∈ SpG(p), and T a fixed p-local abelian group. If

πnΦHX ≅
⎧⎪⎪⎨⎪⎪⎩

T with trivial WGH-action H cyclic

0 else,

then πnX ≅ A/J ⊗ T .
Further, if X is a homotopy commutative equivariant ring spectrum and satisfies the

condition above and T is a p-local commutative ring, then πnX ≅ A/J ⊗T as Green functors.

Here, we are using that the category of Green functors is tensored over commutative rings
[Le, Example 2.2(g)].

Proof. The “if” direction of Proposition 7.11 implies that

VH(A/J ⊗ T ) ≅ πnΦHX,

and since VHπnX ≅ πnΦHX by Proposition 7.8, the “only if” direction of Proposition 7.11
yields the result.

The further result follows since the equivalences in (7.9) are symmetric monoidal and the
p-local marks homomorphism is an isomorphism of rings. �
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Remark 7.13. Proposition 7.11 and Corollary 7.12 hold if we replace the family of cyclic
subgroups of G with any other family F of subgroups of G, and replace J with the Mackey
ideal JF where JF(G/K) is generated by virtual K-sets such that ∣XH ∣ = 0 for all H ∈ F .

8. The case p ≠ q

We will only need the following formal lemma in the context of Theorem 7.3; however, we
state it in the highest generality the argument allows.

Lemma 8.1. Let F ∶ C → D be a symmetric monoidal functor between presentable stable
symmetric monoidal ∞-categories such that Ho(F ) has a left adjoint G that sends F (E)-
acyclics to E-acyclics. Then, for E,X ∈ C, we have LF (E)F (X) ≃ F (LEX).

Proof. Since C and D are presentable stable symmetric monoidal ∞-categories, there is a
localization functor associated to any object.

Next, if Z ∈ D is F (E)-acyclic, we have

HoD(Z,F (LEX)) ≅ HoC(G(Z), LEX) ≅ ∗.

Thus F (LEX) is F (E)-local.
It remains to check that the canonical map F (X) → F (LEX) induces an equivalence

after smashing with F (E). We have a natural commuting diagram

F (E) ∧ F (X) F (E) ∧ F (LEX)

F (E ∧X) F (E ∧LEX)

≃ ≃

≃

and so the top arrow is an equivalence. �

Example 8.2. Lemma 8.1 holds when F = (ΦH) is the functor from Theorem 7.3, and more
generally whenever a symmetric monoidal F descends to an equivalence F ∶Ho(C) → Ho(D).
Let G denote the inverse, and suppose Z ∈ D is F (E)-acyclic. As Z ≃ F (G(Z)),

F (G(Z) ∧E) ≃ F (G(Z)) ∧ F (E) ≃ Z ∧ F (E) ≃ ∗.

Since Ho(F ) is fully faithful, we conclude G(Z) ∧E ≃ ∗, i.e. G(Z) is E-acyclic, as desired.

Example 8.3. Lemma 8.1 holds for any projection map F ∶∏Ci → Cj between symmetric
monoidal ∞-categories. Indeed, the right (and left) adjoint to F is given by

G(Xj)i =
⎧⎪⎪⎨⎪⎪⎩

Xj i = j
∗ otherwise.

Then, for any E = (Ei) ∈ ∏Ci, it is clear that if Zj is F ((Ei)) = Ej-acyclic then G(Zj) is
E-acyclic.

Example 8.4. Lemma 8.1 holds for the forgetful map u∶SphG → Sp from Borel G-spectra
to underlying spectra. The left adjoint sends X to EG+ ∧ infGG/GX, and u(E) ∧Z ≃ ∗ in Sp

iff E ∧ (EG+ ∧ infGG/GZ) ≃ ∗ in SphG.

The p ≠ q analogue of Proposition 6.8 now follows from the calculation of πnLKU/pS from
[Bo, Corollary 4.5] and the following stronger result:
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Proposition 8.5. Let G be an odd q-group, and p ≠ q. Then we have an isomorphism of
graded Green functors

π∗LKUG/pSG ≅ A/J ⊗ π∗LKU/pS (8.6)

and moreover an equivalence of (homotopy) commutative equivariant ring spectra

LKUG/pSG ≃ ECyc+ ∧ infGG/GLKU/pS, (8.7)

where ECyc is the universal space for the family of cyclic subgroups of G.

Proof. Lemma 8.1 implies that applying Examples 8.2, 8.3 and 8.4 to the composite

Ho SpG(p)
(ΦH)
ÐÐÐ→ ⊕

(H)
Ho Sp

hWG(H)
(p) Ð→ Ho Sp

hWG(H)
(p) Ð→ Ho Sp(p),

yields an equivalence

ΦHL(KUG)/pSG ≃ LΦH(KUG)/pΦ
HSG

as non-equivariant spectra. Since ΦH preserves cofiber sequences, Propositions 3.5 and 3.10
imply that ΦH((KUG)/p) ≃ ΦH(KUG)/p is a free KU/p-module for H cyclic, and con-
tractible otherwise. Thus, as non-equivariant spectra,

ΦHL(KUG)/pSG ≃
⎧⎪⎪⎨⎪⎪⎩

L⋁KU/pS ≃ LKU/pS H cyclic

∗ otherwise.
(8.8)

Corollary 7.12 then implies (8.6).
Towards (8.7), we note that

ΦH(ECyc+∧ infGG/GLKU/pS) ≃ (ECycH)+∧ΦH(infGG/GLKU/pS) ≃
⎧⎪⎪⎨⎪⎪⎩

LKU/pS H cyclic

∗ else,

so that the geometric fixed points of LKUG/pSG agree with those of ECyc+ ∧ infGG/GLKU/pS.
It remains only to produce a map of E∞-rings of G-spectra

infGG/GLKU/pS Ð→ LKUG/pSG,

or equivalently a map of E∞-rings

LKU/pS Ð→ (LKUG/pSG)G.

In other words, it suffices to show that (LKUG/pSG)G is KU/p-local.

Thus let X be a KU/p-acyclic. We wish to show that [X, (LKUG/pSG)G] = 0. The
assumption is equivalent to the statement that X/p is KU -acyclic. The vanishing is equivalent
to the vanishing of

[infGG/GX,LKUG/pSG]G.

Thus it suffices to show that infGG/GX is KUG/p-acyclic, or equivalently that infGG/GX/p is
KUG-acyclic. But

infGG/GX/p ∧ infGG/GKU ≃ infGG/G(X/p ∧KU) ≃ ∗,

so the result follows by base change along the E∞-ring map infGG/GKU Ð→KUG. �
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9. Computing using the arithmetic fracture square

We need one final lemma.

Lemma 9.1. For all finite groups G there is an equivalence of rational equivariant spectra

Q⊗LKUG
SG ≃H(Q⊗A/J),

where H(Q⊗A/J) is the equivariant Eilenberg-MacLane spectrum.

Proof. It follows from [Bo, Proposition 2.11], that Q⊗LKUG
SG ≃ LQ⊗KUG

SG. The functor
(ΦH) is an equivalence from the category of rational G-equivariant spectra to the product of
the rational Borel-equivariant categories.

Now, by Lemma 8.1, we have equivalences ΦH(LQ⊗KUG
SG) ≃ LΦH(Q⊗KUG)Φ

HSG ≃
LΦH(Q⊗KUG)S of non-equivariant spectra. Moreover, we have

LΦH(Q⊗KUG)S ≃
⎧⎪⎪⎨⎪⎪⎩

LHQS ≃HQ H cyclic

∗ else,

since Q⊗ΦHKUG ≃ ∗ when H is not cyclic, and Q⊗ΦHKUG is a nontrivial HQ-module
when H is cyclic. The rational analogue of Corollary 7.12 then implies that Q⊗LKUG

SG ≃
H(Q⊗A/J). �

We can now prove our main result.

Proof of Theorem 1.1. Adapting (2.3) with X = LKUG
SG yields the following homotopy

pullback square of E∞-rings in G-spectra

LKUG
SG ∏

p

LKUG/pSG

Q⊗LKUG
SG Q⊗∏

p

LKUG/pSG.

g

f

(9.2)

This yields a long-exact sequence in Mackey functor-valued homotopy. Since π1LKUG/pSG is
trivial except when p = 2 or p = q, when it is torsion by [Bo, Corollary 4.5] with Proposition 8.5
or Proposition 6.8, we have the long-exact sequence:

0Ð→ π0LKUG
SG Ð→ (Q⊗ π0LKUG

SG) ⊕ (∏π0LKUG/pSG) f−gÐ→ Q⊗∏π0LKUG/pSG.

Applying Lemma 9.1, Proposition 6.8, and Proposition 8.5, this is the long exact sequence of
Mackey functors

0Ð→ π0LKUG
SG Ð→ (Q⊗A/J)⊕(∏

p

(A/J)∧p)×(A/J⊗F2)
f−gÐÐ→ Q⊗

⎛
⎝∏p

(A/J)∧p × (A/J ⊗ F2)
⎞
⎠
.

The factor containing F2 arises from the fact that π0LKU/2S ≅ Z2 ⊕ F2. Note that there is
an isomorphism of Mackey functors

Q⊗
⎛
⎝∏p

(A/J)∧p × (A/J ⊗ F2)
⎞
⎠
≅ Q⊗

⎛
⎝∏p

(A/J)∧p
⎞
⎠
.

It follows that A/J ⊗F2 is in the kernel of f − g. The remaining part of the exact sequence is
the arithmetic fracture square for A/J . As A(H)/J(H) is a finitely generated free abelian
group for each H ⊆ G, we have A/J ⊕ (A/J ⊗ F2) = ker(f − g). �
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Given Theorem 1.1, it is natural to wonder if there is an isomorphism

πiLKUG
SG ≅ A/J ⊗ πiLKUS

or even if (LKUG
SG)H ≃ LKUS ⊗A(H)/J(H). This is already false for i = 1.

Proposition 9.3. For G = C3, we have

π1LKUG
SG ≅ (A⊗ π1LKUS) ⊕ T ,

where T is the unique C3-Mackey functor with T (G/e) = 0 and T (G/G) = Z/3.

Proof. We first recall [Bo, Corollary 4.5, Corollary 4.6] that π1LKUS ≅ π1LKU/2S ≅ (Z/2)2

and that π1LKU/pS ≅ 0 if p ≠ 2. The pullback square (9.2) implies that

π1 (LKUG
SG) ≅ π1(∏

p

LKUG/pSG) ≅∏
p

π1 (LKUG/pSG) .

Proposition 8.5 gives that, for p ≠ 3,

π1LKUG/pSG ≅ A⊗ π1LKU/pS,

since the ideal J vanishes if G is cyclic. Thus it follows that

π1LKUG
SG ≅ π1 (LKUG/3SG) ⊕ (A⊗ π1LKU/2S) .

It remains to determine π1 (LKUG/3SG).

We may compute π1 (LKUG/3SG) by use of the fiber sequence (6.4). As in Proposition 6.8,
this Mackey functor can be computed as

π1 (LKUG/3SG) ≅ coker (ψ` − 1∶ (RUG)∧3{β} → (RUG)∧3{β}) .
Here, we may take ` = 2. At the underlying level, this is the classical π1(LKU/3S), which

vanishes. At the fixed point level, let us again write RU(C3) = Z[x]/(x3 − 1). Then
ψ2(x ⋅ β) = 2x2 ⋅ β and similarly ψ2(x2 ⋅ β) = 2x ⋅ β. The homomorphism

ψ2 − 1∶RU(C3)∧3{β} Ð→ RU(C3)∧3{β}
may therefore be represented by the matrix

⎛
⎜
⎝

2 − 1 0 0
0 −1 2
0 2 −1

⎞
⎟
⎠
∼
⎛
⎜
⎝

1 0 0
0 −1 2
0 0 3

⎞
⎟
⎠
.

We conclude that the cokernel is isomorphic to Z/3. �

10. The G-E∞-ring structure on LKUG
SG

In this final section, we apply the results of Section 3 and [H] to show that LKUG
SG is a

G-E∞-ring spectrum when G is an odd q-group. This implies that π0LKUG
SG is a Tambara

functor. Moreover, we determine this structure in the case where G is cyclic.
We will make use of the norm construction NG

H ∶SpH Ð→ SpG (see [HHR, Section 2.2.3]).
This lifts to a functor on H-E∞-rings, where it participates in an adjunction

H−E∞−ring(SpH) G−E∞−ring(SpG).
NG

H

↓GH
(10.1)

We will also follow [H] in writing NG/H for the composite functor NG
H○ ↓GH on G-spectra.

More generally, by decomposing a finite G-set T into a disjoint union of orbits, the norm NT

can be interpreted as the smash product of norms of the form NG/Hi , as in [H, Definition 2.2].
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Proposition 10.2. For G an odd q-group, LKUG
SG admits the structure of a G-E∞-ring.

Proof. By [H, Theorem 3.9], it suffices to show that for L ⊆ G and each L-set T , the norm
NG×LT (−) preserves KUG-acyclics. After decomposing T into transitive L-sets ∐iL/Hi, we
have

NG×LT (X) ≅ ⋀
i

NG/Hi(X).

Thus it suffices to show that each norm NG/Hi(−) preserves KUG-acyclics. Therefore we
may assume that G ×L T ≅ G/H.

Let X be a KUG-acyclic G-spectrum. Since ΦKKUG ≃ ∗ for K ⊆ G noncyclic, this is
equivalent to the statement that ΦKX is ΦKKUG-acyclic for K ⊆ G cyclic. Further, since
ΦKKUG is a free KU[ 1

q
]-modules for K nontrivial cyclic and ΦeKUG is a free KU -module,

we have that ΦKX ∧KU[ 1
q
] ≃ ∗ for K nontrivial cyclic and ΦeX ∧KU ≃ ∗.

Thus, to show that NG/HX is KUG-acyclic, it suffices by [H, Proposition 3.2] to show that

ΦK(NG/HX) is KU[ 1
q
]-acyclic for K nontrivial cyclic and that Φe(NG/HX) is KU -acyclic.

[H, Lemma 2.1] provides us with an equivalence

ΦK(NG/HX) ≃ ⋀
KgH∈KG/H

ΦK
g∩HX,

where Kg = gKg−1. For K a nontrivial cyclic subgroup of G, Kg ∩H is cyclic and may be
trivial. Either way, it follows that ΦKg∩HX ∧KU[ 1

q
] ≃ ∗. If K is trivial, then all of the

factors are ΦeX and these are KU -acyclic. Thus ΦK(NG/HX) is ΦKKUG-acyclic for each

cyclic subgroup K ⊆ G and NG/HX is KUG-acyclic. �

Recall from [HHR, Section 2.3.3] that if X is a G-E∞-ring, then for x ∈ πH0 (X), the norm
on x may be calculated as the composition

SG ≃ NG
H(SH)

NG
H(x)

ÐÐÐÐ→ NG
H(↓GH X) εÐ→X,

where ε is the counit of the adjunction (10.1).
In the case where G = Cqk is a cyclic q-group, we will simplify our notation and write

N j
i = N

Cqj

Cqi
and Rji = R

Cqj

Cqi

for the norm and restriction maps of a Cqk -Tambara functor.
The following lemma was suggested to us by Balderrama.

Lemma 10.3 (Balderrama). Let G = Cqk be a cyclic odd q-group. For 0 ≤ i ≤ k, let xi be
the generator of

π
Cqi

0 LKUC
qk
SC

qk
≅ A(Cqi)[xi]/(x2

i ,2xi). (10.4)

Then for all 0 ≤ i ≤ j ≤ k, N j
i (xi) ≠ 0.

Proof. As x2
0 = 0, it follows that N i

0(x0)2 = 0. Since A(G) has no nilpotents, we conclude
that xi divides N i

0(x0). Thus, it suffices to prove that Nk
0 (x0) ≠ 0. By the discussion above,

we see that Nk
0 (x0) is the composite

SC
qk

N
C
qk

e (x0)ÐÐÐÐÐÐ→ N
C

qk

e (↓
C

qk

e LKUC
qk
SC

qk
) εÐ→ LKUC

qk
SC

qk
. (10.5)
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Applying the geometric fixed point functor ΦCqk (−) to this gives the composite

S
x0Ð→ LKUS → LKUS [1

q
]

by [HHR, Section 2.5.4] and Proposition 3.5. Since x0 is not q-torsion (since q is odd), this
map is nonzero. Thus the original composite (10.5) must be nonzero as well. �

We recall that A(Cqi) is a free abelian group with generators yj = [Cqi/Cqj ] for 0 ≤ j ≤ i.
Then yi = 1 is the unit for the ring structure, and A(Cqi) is generated as a ring by the

yj with j ≠ i. The restriction map Ri+1
i ∶A(Cqi+1) → A(Cqi) is given on the multiplicative

generators by Ri+1
i (yj) = qyj , where 0 ≤ j < i + 1.

Since the Tambara functor structure on A is known, the following proposition determines
the Tambara functor structure on π0LKUC

qk
SC

qk
.

Proposition 10.6. Let G = Cqk be a cyclic odd q-group. With notation as in (10.4) and

above, N i+1
i (xi) = xi+1(1 + yi).

Proof. Since x2
i = 0 and A(G) has no nilpotents, we know that

N i+1
i (xi) = xi+1 (ai+1 + aiyi + ai−1yi−1 ⋅ ⋅ ⋅ + a0y0) .

Here, the coefficients aj can be taken to be 0 or 1, as 2xi+1 = 0. We then have

Ri+1
i N i+1

i (xi) = xi (ai+1 + aiq + ai−1qyi−1 + ⋅ ⋅ ⋅ + a0qy0)
= xi (ai+1 + ai + ai−1yi−1 + ⋅ ⋅ ⋅ + a0y0) ,

where the last equality follows from the fact that q is odd. Since Ri+1
i N i+1

i (xi) = xqi = 0, it
follows that ai−1 = ai−2 = ⋅ ⋅ ⋅ = a0 = 0 and ai+1 + ai ∈ 2Z. But by Lemma 10.3, N i+1

i (xi) ≠ 0,
and so we must have ai+1 = ai = 1. Thus N i+1

i (xi) = xi+1(1 + yi). �
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