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Abstract. We compute the rational homotopy groups of the K(n)-local sphere for all heights
n and all primes p, verifying a prediction that goes back to the pioneering work of Morava
in the early 1970s. More precisely, we show that the inclusion of the Witt vectors into the
Lubin–Tate ring induces a split injection on continuous stabilizer cohomology with torsion
cokernel of bounded exponent, thereby proving Hopkins’ chromatic splitting conjecture and
the vanishing conjecture of Beaudry–Goerss–Henn rationally. The key ingredients are the
equivalence between the Lubin–Tate tower and the Drinfeld tower due to Faltings and Scholze–
Weinstein, integral p-adic Hodge theory, and an integral refinement of a theorem of Tate on
the Galois cohomology of non-archimedean fields.
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1. Introduction

A central problem in homotopy theory is to understand the homotopy groups of spheres
πk+dS

k, i.e., the group of continuous maps Sk+d → Sk up to homotopy. It follows from the
Freudenthal suspension theorem that πk+dS

k stabilizes for k > d + 1, so one may first seek to
determine the stable homotopy groups of spheres, πdS0 := limk→∞ πk+dS

k. These are abelian
groups. We have πdS0 = 0 for d < 0 and an isomorphism π0S

0 ∼= Z encoding the degree of a
map. For d > 0, Serre showed that πdS0 is finite.

Early attempts at understanding π∗S
0 through explicit calculations in small degrees only

provided limited information about the large-scale structure. Chromatic homotopy theory begins
with the deep observation that the elements of π∗S0 may be organized into certain periodic
families of increasing periodicity, which depend on a prime number p. From a modern perspective,
these periodic families are the homotopy groups of localizations LnS0 of S0. These localizations
provide successive approximations to the sphere spectrum

S0 → . . .→ LnS
0 → . . .→ L1S

0 → L0S
0 ' S0

Q

whose associated graded pieces are given by theK(n)-local spheres LK(n)S
0, implicitly depending

on p. The homotopy limit of this tower recovers S0
(p), the p-localization of S0. Since π∗S0

(p) is the
p-localization of π∗S0, and since these taken together determine π∗S0, a fundamental problem
in the field is to understand the homotopy groups π∗LK(n)S

0.
In the case n = 0, we have LK(0)S

0 ∼= S0
Q, the rational sphere spectrum. As an immediate

consequence of the aforementioned theorem of Serre, π∗S0
Q
∼= Q ⊗ π∗S0 is Q in degree 0 and

0 otherwise. In the case n = 1, π∗LK(1)S
0 was calculated in the 1970s by Adams–Baird (un-

published) and Ravenel [Rav84]. The case n = 2 took many years of work by many people and
was only recently resolved (see [SY95, SW02b, SW02a, GHMR05, Beh12, Koh13, BGH22] for an
incomplete list); even stating the answer is very involved. Consequently, a full computation of
π∗LK(n)S

0 for n > 2 seems to be out of reach.
In light of this, attention over the last few decades has gradually turned towards understanding

structural features of π∗LK(n)S
0. Since the 1970s and motivated by the work of Lazard and

Morava, a guiding problem has been to determine the free Zp-summands in π∗LK(n)S
0 or,

equivalently, to understandQ⊗π∗LK(n)S
0. Through the full force of the computations mentioned

above, this is now known for n ≤ 2 and all primes p. In this paper, we resolve this question
completely for all n and all primes p:

Theorem A. There is an isomorphism of graded Q-algebras

Q⊗ π∗LK(n)S
0 ∼= ΛQp

(ζ1, ζ2, . . . , ζn),

where the latter is the exterior Qp-algebra on generators ζi in degree 1− 2i.
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In particular, this result confirms the rational part of Hopkins’ chromatic splitting conjecture
[Hov95] for all primes p and all heights n. Previously, this was only known for n ≤ 2 through the
explicit computation in the works listed above. As such, Theorem A constitutes the first general
result in the direction of this conjecture since the construction of the class ζ ∈ π−1LK(n)S

0 by
Devinatz and Hopkins [DH04] in the early 2000s. We will give a more thorough explanation of
the homotopical context for our results in Section 2.

In order to explain our approach, we recall that the homotopy groups of LK(n)S
0 can be

approached algebraically through Lubin and Tate’s deformation theory of formal groups. Let
Γn be a formal group of dimension 1 and height n over Fp, and let Gn = Aut(Γn,Fp) be the
so-called Morava stabilizer group, defined as the group of automorphisms of Γn that lie over
an automorphism of Fp. Then Gn is an extension of Gal(Fp/Fp) ∼= Ẑ by AutFp

(Γn). Let
W = W (Fp) be the ring of p-typical Witt vectors. By Lubin–Tate theory, there is a complete
local ring A ∼= W Ju1, . . . , un−1K, corepresenting deformations of Γn, which admits a continuous
action by Gn. Further, the invariant differentials ω of the universal deformation of Γn form an
invertible A-module, and the natural actions of Gn on A and ω extend to an action of Gn on the
graded ring A∗ =

⊕
t∈2Z ω

⊗t/2 (i.e., A∗ is evenly concentrated). The Devinatz–Hopkins spectral
sequence [DH04] takes the form

Hs
cts(Gn, At) =⇒ πt−sLK(n)S

0,

where Hs
cts refers to continuous cohomology. Thus understanding the bi-graded ring Hs

cts(Gn, At)
is of great importance in chromatic homotopy theory. However, the action of Gn on A∗ is difficult
to describe, see [DH95].

Consider instead the problem of computing H∗cts(Gn,W ), where Gn acts on W through its
quotient Gal(Fp/Fp). A classical theorem of Lazard [Laz65] states that the cohomology of a
p-adic Lie group G with Qp-coefficients can be computed in terms of Lie algebra cohomology.
Applied to the p-adic Lie group AutFp

(Γn), Lazard’s theorem provides an isomorphism of graded
Qp-algebras:

H∗cts(Gn,W )⊗Zp Qp ∼= ΛQp(x1, x2, . . . , xn) (1.0.1)

Here, the right hand side is the exterior Qp-algebra on generators xi of degree 2i− 1.
Remarkably, and verified by extensive calculations for heights n ≤ 2 over the last 40 years,

work of Morava [Mor85] from the early 1970s suggests that the natural map of Zp-modules

H∗cts(Gn,W ) // H∗cts(Gn, A) (1.0.2)

is a rational isomorphism; i.e., it becomes an isomorphism after inverting p. The main result of
this paper establishes a refinement of this conjecture:

Theorem B. For every integer s ≥ 0, the natural map W ↪→ A induces a split injection

Hs
cts(Gn,W ) ↪→ Hs

cts(Gn, A)

whose complement is killed by a power of p. In particular,

Hs
cts(Gn,W )⊗Zp

Qp → Hs
cts(Gn, A)⊗Zp

Qp
is an isomorphism.

We have not attempted to make explicit the power of p which kills the complement of
Hs

cts(Gn,W ) in Hs
cts(Gn, A), though this should be possible by our methods. In fact, at heights

n = 1, 2 this complement is zero, suggesting that this might be the case in general; this is known
as the “chromatic vanishing conjecture”.

The proof of Theorem B is summarized in Section 3.9. It relies upon recent advances in p-adic
geometry. Ultimately we draw much of our power from the isomorphism, due to Faltings [Fal02a]
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and clarified by Scholze and Weinstein [SW13], between the Lubin–Tate and Drinfeld towers.
Faltings’ isomorphism may be regarded as an equivalence of stacks:

[LT /Gn] ' [H/GLn(Zp)]. (1.0.3)

The cohomology of the stack on the left accesses H∗cts(Gn, A). The main idea is to use this
isomorphism to replace the opaque action of Gn on Lubin–Tate space LT with the far more
transparent action of the group GLn(Zp) on Drinfeld’s symmetric space H. Theorem A is then
readily deduced from Theorem B via the Devinatz–Hopkins spectral sequence.

The groups appearing in (1.0.3) are profinite, and accordingly the stacks appearing there must
be construed as living on the pro-étale topology Xproét on rigid-analytic spaces. Thereby the pro-
étale cohomology of rigid-analytic spaces, first considered in [Sch13a] and expanded in [BMS18],
enters the picture as an indispensable tool. Much of this article is concerned with controlling
the pro-étale cohomology H∗(Xproét, Ô

+) of the completed structure sheaf Ô+ on Xproét for a
rigid-analytic space X over a local field K of characteristic (0, p), for example X = LT or X = H.

The results we obtain are new even for the case whenX = SpaK is a single point. In that case,
H∗(Xproét, Ô

+) is the continuous cohomology H∗cts(Gal(K/K),OC), where C is the completion
of an algebraic closure K of K. One of our results (Theorem 4.0.4) is a refinement of a classical
theorem of Tate.

Theorem C. Let K be a local field of characteristic (0, p), and let C be the completion of an
algebraic closure K of K. Let OK ⊂ K and OC ⊂ C denote the valuation rings. There is an
isomorphism of graded OK-modules:

H∗cts(Gal(K/K),OC) ∼= OK [ε]⊕ T,
where ε is a degree 1 element with ε2 = 0 and T is pN -torsion with N an absolute constant (in
fact, N = 6 suffices).

Our results on the pro-étale cohomology of rigid-analytic spaces X apply under certain hy-
potheses regarding the existence of semi-stable models for X after extension of scalars. The
cleanest result we have (Corollary 5.6.9) applies when X admits a semistable model over OK .

Theorem D. Let K be a local field of characteristic (0, p), and let X be a quasi-separated
semistable formal scheme over OK , with rigid-analytic generic fiber X. There is a natural iso-
morphism of graded K-vector spaces:

H∗(X,O)⊗OK
K[ε] ∼= H∗(Xproét, Ô

+)⊗OK
K

Here H∗(X,O) is coherent cohomology, and ε is a degree 1 element with ε2 = 0.

Outline of the document. Since this paper is written with an audience of both arithmetic
geometers and homotopy theorists in mind, we have chosen to include additional background
material that might be familiar for one group but not necessarily the other. In that spirit, we
begin in Section 2 with a rapid review of the key players in chromatic homotopy theory, working
towards stating the chromatic splitting conjecture. We then construct a splitting on the level
of cohomology via power operations and deduce Theorem A from Theorem B. Section 3 then
collects preliminary material from arithmetic geometry, including the notion of an adic space,
a short treatment of continuous cohomology from the condensed perspective, and the pro-étale
topology. The section concludes with an outline of the proof of Theorem B, see Section 3.9,
which is then fleshed out in the rest of the paper. In Section 4, we establish integral refinements
of a theorem of Tate, including Theorem C, by determining bounds on the torsion exponents
in the Galois cohomology of OC and its Tate twists, where C is the completion of an algebraic
closure of a local field K of mixed characteristic. We then globalize this result in Section 5 to the
pro-étale cohomology of the generic fiber of a semistable formal scheme over OK with coefficients
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in the sheaf of bounded functions, and prove Theorem D. Finally, in Section 6, we put all the
pieces together to prove Theorem B, by first applying our methods separately to the Drinfeld
tower and the Lubin–Tate tower, and then deducing our main theorem via the isomorphism of
towers.
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2. Chromatic homotopy theory

The goal of this section is to place Theorem B in the context of stable homotopy theory
and deduce Theorem A from Theorem B. To this end, we begin with a rapid review of some
relevant material from chromatic homotopy theory, before turning to the applications. We refer
the reader interested in a more thorough introduction to the subject to the following sources:
[Lur10, BB20, BGH22]. The readers familiar with chromatic homotopy theory can safely skip
ahead to the new results, beginning in Section 2.5.

2.1. Chromatic characteristics. Our starting point is the chromatic perspective on the cate-
gory of spectra as envisioned by Morava [Mor85] and Ravenel [Rav84] and established by Dev-
inatz, Hopkins, and Smith [DHS88, HS98]. This story has been told by many, and we take
a revisionistic approach following [BB20], also freely using the language of higher algebra as
developed by Lurie in [Lur09, Lur17].

In order to motivate the homotopical constructions, let us first recast some familiar concepts
from algebra in more category-theoretic language; the resulting definitions can then be trans-
ported more easily to higher algebra. Let Mod(Z) be the symmetric monoidal abelian category of
abelian groups. A non-trivial unital associative ring A ∈ Mod(Z) is said to be a division algebra
(or skew field) if any module over A is free. Two division algebras A and B are said to be of
the same characteristic if A⊗Z B 6= 0. It is straightforward to verify that this notion induces an
equivalence relation on the collection of all division algebras in Mod(Z).

It turns out that we can classify all such characteristics: Indeed, the minimal representative
of the equivalence classes of characteristics of division algebras in Mod(Z) are given by the prime
fields Fp for primes p and Q. This fact is essentially a translation of the basic classification of
prime fields in classical algebra.

Stable homotopy theory is the study of the category Sp of spectra, which forms a higher
analogue of the category of abelian groups; Waldhausen and May coined the term ‘brave new
algebra.’ The role of the integers is then played by the sphere spectrum S0, and the tensor
product is replaced by the smash product written as ⊗ or ⊗S0 for emphasis. Equipped with this
structure, Sp forms a symmetric monoidal stable ∞-category; we may therefore speak of rings
and their modules in this setting. Interpreted in this context, formally there is an identification
Sp = Mod(S0). The next definition is then the natural higher algebraic counterpart to the
concept of characteristic as discussed above:
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Definition 2.1.1. A division algebra in Sp is a unital associative ring spectrum A such that
every A-moduleM splits into a direct sum of shifts of free rank 1 modules. Two division algebras
A,B ∈ Sp are of the same (chromatic) characteristic if and only if A⊗S0 B 6= 0.

We again obtain an equivalence relation on the collection of all division algebras in Sp, so
we are naturally led to ask if we can understand the equivalence classes. This question has
been answered completely in the aforementioned seminal work of Devinatz, Hopkins, and Smith.
Stating their classification in the form we want requires a short detour. Let p be a prime, let
κ be a perfect field of characteristic p, let Γ be a 1-dimensional height n commutative formal
group over κ, and finally let n ∈ N ∪ {∞}. It is an insight of Morava, based on earlier work of
Quillen, that this data lifts to Sp: there exists a multiplicative cohomology theory K(Γ, κ)∗ with
the following properties:

(1) The value of K(Γ, κ)∗ on a point is given by

K(Γ, κ)∗(pt) ∼=


Q if n = 0

κ[v±1
n ] if 0 < n <∞

κ if n =∞,
where vn is a formal variable in degree 2pn − 2.

(2) K(Γ, κ)∗ is complex oriented, and the K(Γ, κ)∗-cohomology of complex projective space
represents the formal group Γ:

Spf(K(Γ, κ)∗(CP∞)) ∼= Γ.

(3) K(Γ, κ)∗ satisfies the Künneth formula for any two spectra X,Y :

K(Γ, κ)∗(X ⊗ Y ) ∼= K(Γ, κ)∗(X)⊗K(Γ,κ)∗ K(Γ, κ)∗(Y ).

By Brown representability, K(Γ, κ)∗ is represented in the category of spectra by a (unital and
associative) ring spectrum K(Γ, κ), known as Morava K-theory (at height n and over the field
κ). Since the ring of coefficients K(Γ, κ)∗(pt) is a graded field, K(Γ, κ) itself must be a divi-
sion algebra in the sense of Definition 2.1.1. For example, if Ĝa is the formal additive group,
then K(Ĝa,Q) and K(Ĝa,Fp) represent singular cohomology with coefficients in Q and Fp, re-
spectively. If Ĝm is the formal multiplicative group, then K(Ĝm,Fp) is a summand of mod p
complex topological K-theory. Generalizing the last example, for any prime p and any height
n ∈ N, there exists a formal group Γn of height n over Fp. Mildly abusing notation, we set
K(n, p) := K(Γn,Fp), keeping the choice of field implicit. (After base change to an algebraically
closed field, Γn is unique up to isomorphism by a theorem of Lazard [Laz75].) We also set
K(0, p) = K(Ĝa,Q) and K(∞, p) = K(Ĝa,Fp).

Armed with a good collection of division algebras, we can now return to the classification of
characteristics in Sp to state:

Theorem 2.1.2 (Devinatz–Hopkins–Smith). The collection of Morava K-theories K(n, p) for
p ranging through the primes and n ∈ N ∪ {∞} forms a complete and pairwise distinct set of
representatives for the characteristics of division algebras in Sp. Moreover, the K(n, p)s are
minimal in the sense that any division algebra of the same characteristic as K(n, p) is a module
over K(n, p).

In other, more plain terms: the Morava K-theories K(n, p) provide precisely the prime fields
of the category of spectra. A couple of remarks are in order.

• (Non-commutativity) In contrast to the situation in classical algebra, the Morava K-
theories in intermediate characteristic 0 < n <∞ cannot be made commutative. In fact,
they do not even afford the structure of an E2-ring spectrum, see for instance [ACB19].
This is the main reason to work with division algebras in the definition of characteristic.
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• (Interrelation) A finitely generated abelian group M with M ⊗ Q 6= 0 also satisfies
M ⊗Fp 6= 0 for all primes p. This statement has a chromatic refinement: If X is a finite
spectrum, i.e., a compact object in Sp, thenK(n, p)∗(X) 6= 0 impliesK(n+1, p)∗(X) 6= 0.
Both the classical algebraic statement and the chromatic statement are false in general
for non-compact objects.

To access and isolate the part of Sp that is visible to a fixed Morava K-theory K(n, p),
we need another important tool from stable homotopy theory, namely the theory of Bousfield
localization. These form a suitable generalization of localizations and (derived) completions
familiar from commutative algebra.

Fix an arbitrary spectrum M ∈ Sp. A spectrum X is said to be E-acyclic if M∗(X) = 0; a
spectrum Y is then calledM -local if any map X → Y from anM -acyclic spectrum X is null, i.e.,
factors through a zero object. Intuitively, we wish to quotient Sp by the ideal of all M -acyclic
spectra to focus on those spectra which are “seen” by M . Bousfield [Bou79] rigorously proved
that this works, thereby constructing a localization functor LM : Sp → Sp with the following
properties:

(1) LMX = 0 if and only if X is M -acyclic;
(2) LM is idempotent and has essential image spanned by the M -local spectra;
(3) for any Z ∈ Sp, there is a natural map Z → LMZ which exhibits LMZ as the initial

map out of Z to an M -local spectrum.
These properties characterize LM uniquely up to homotopy. Finally, we denote the full subcate-
gory of M -local spectra by SpM ; alternatively, this category is obtained from Sp by inverting all
M -equivalences, i.e., those maps which induce isomorphisms in M∗-homology. Via localization,
SpM inherits a structure of symmetric monoidal ∞-category from Sp, with tensor product given
by the localized smash product.

Some examples might be illuminating. If M = Q, then LQ is rationalization, whose effect on
homotopy groups of any spectrum is tensoring with Q. The element p ∈ Z ∼= π0S

0 is represented
by a map p : S0 → S0, whose cofiber we denote by S0/p, the mod p Moore spectrum. On
the one hand, the local category SpS0/p is the category of p-complete spectra, and localization
at S0/p has the effect of derived p-completion on homotopy groups. It is customary to write
Xp := LS0/pX and Spp := SpS0/p. On the other hand, localizing at M = S0[1/p], the colimit
over multiplication by p on S0, has the effect of inverting p on S0. Similarly, we can construct
spectral analogues of p-localization, by inverting all primes but p, to obtain the category Sp(p)

of p-local spectra. For more information about various localizations on Sp, we refer to [Bou79].
The main example of interest to us is SpK(n,p), the so-called K(n, p)-local category. In light

of Theorem 2.1.2, it forms an irreducible piece of the category of spectra, as we will explain
momentarily, and it is one of the key objects of study in chromatic homotopy theory. Note that
the functor LK(n,p) and thus SpK(n,p) only depend on the characteristic and are in particular
independent of the choice of Γn.

2.2. Chromatic divide and conquer. From now on, we will restrict attention to the category
of p-local spectra for a fixed prime p, and usually drop the prime from the notation. Intuitively
speaking, the idea of the chromatic approach to stable homotopy theory is to filter the category
of p-local spectra Sp(p) by its subcategories of mixed chromatic characteristics (0, 1, . . . , n) for
n→∞. Here we say that a spectrum has mixed chromatic characteristic (0, 1, . . . , n) if it is local
with respect to the direct sum K(0) ⊕ K(1) ⊕ . . . ⊕ K(n), and we write Ln for the associated
Bousfield localization. There is then a sequence of Bousfield localization functors and natural
transformations,

. . .→ Ln → Ln−1 → . . .→ L1 → L0 (2.2.1)
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the so-called chromatic tower. Note that the bottom layer is rationalization L0 = LQ. Also
note that the infinite height has been omitted, a curiosity justified by the chromatic convergence
theorem of Hopkins–Ravenel [Rav92]: If X is a p-local finite spectrum, then it can be recovered
from its chromatic tower (2.2.1):

X ' limn LnX.

Given X, it is then sensible to ask for the graded pieces of its chromatic filtration, i.e., the
difference between LnX and Ln−1X. This is captured by the chromatic fracture square, taking
the form of a (homotopy) pullback square that exists for any height n > 0 and an arbitrary
spectrum X:

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X.

(2.2.2)

Geometrically, one should think of this square as being analogous to the gluing square for a sheaf
over an open-closed decomposition of a space. In this picture, LK(n)X corresponds to the sheaf
over a formal neighborhood of a point, while Ln−1X is the restriction to the open complement
of the point. The term Ln−1LK(n)X along with the maps pointing to it then control the gluing
process.

The weakest form of Hopkins’ chromatic splitting conjecture stipulates that the bottom hor-
izontal map in (2.2.2) is split for X = S0 (and hence for any finite spectrum X), so that the
chromatic assembly process takes a particularly simple form. The strong form of the conjecture
(Conjecture 2.4.2 below) gives a complete description of Ln−1LK(n)S

0 in terms of the LiS0 for
i ≤ n. Assuming it, one could inductively reduce the study of the LnS0 to that of the LK(n)S

0,
whose homotopy groups are identified after inverting p by our Theorem A.

2.3. Morava E-theory and the cohomology of the stabilizer group. Just as a height
n formal group over Fp gives rise to the spectrum K(n), the Lubin–Tate ring also admits a
spectral incarnation. Let Γ be a height n formal group over a perfect field κ of characteristic
p. Let A(Γ, κ) denote its ring of deformations, so that A(Γ, κ) ∼= W (κ)Ju1, . . . , un−1K. An
unpublished theorem of Goerss–Hopkins–Miller, revisited and extended by Lurie in [Lur18], lifts
this data to a commutative algebra in SpK(n), called E(Γ, κ), with the property that

π∗E(Γ, κ) ∼= A(Γ, κ)[β, β−1], |β| = 2.

The commutative ring spectrum E(Γ, κ) is known as Morava E-theory or Lubin–Tate theory.
In fact, Goerss, Hopkins, and Miller prove something stronger. Consider the 1-category of

formal groups over perfect fields FG. The objects of FG are given by pairs (Γ, κ) as above,
and a morphism (Γ, κ) → (Γ′, κ′) in FG consists of a ring map i : κ → κ′ together with an
isomorphism of formal groups i∗Γ ∼−→ Γ′. Goerss, Hopkins, and Miller produce a fully faithful
functor E(−,−) : FG → CAlg(Sp). It is important to note that the source is a 1-category and
that the target is an ∞-category. Thus this theorem identifies a very rigid portion of CAlg(Sp),
in which the mapping spaces are homotopy equivalent to sets.

The underlying spectrum of E(Γ, κ) is easily constructed as a consequence of the Landweber
exact functor theorem. That theorem produces cohomology theories out of the complex cobor-
dism spectrum with specified formal groups, so long as these satisfy a certain hypothesis. The
universal deformation of Γ over A(Γ, κ) satisfies the hypothesis, and this gives rise to Morava
E-theory. However, producing Morava E-theory as a commutative algebra in SpK(n) is quite
a bit more difficult and requires either obstruction theory or a derived deformation theory of
formal groups—this is the content of the Goerss–Hopkins–Miller theorem.
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Let Γn be any formal group of height n over Fp; then Γn is unique up to isomorphism. We
write En = E(Γ,Fp). We let Gn = Aut(Γn,Fp) ∼= AutEn, the Morava stabilizer group. As a
topological group, Gn may be identified with the profinite completion D̂× of D×, where D is the
central simple algebra of invariant 1

n over Qp, with ring of integers OD = EndFp
(Γn).

It turns out that LEn
= Ln, so En does not provide us with a new localization functor.

Furthermore, there is a close relationship between En and K(n), akin to the one between a
local ring and its residue field. Since the ideal In = (p, u1, . . . , un−1) of π0En is generated
by a regular sequence, we may form a (not necessarily commutative) ring spectrum En/In by
iterated cofibers. This will have the property that π∗(En/In) ∼= π∗(En)/In = κ[β, β−1]. The ring
spectrum obtained in this way is equivalent as a spectrum to a finite direct sum of suspensions
of K(Γn, κ):

En/In '
⊕

0≤i≤pn−2

Σ2iK(Γn, κ).

Here, the direct sum accounts for the fact that En is 2-periodic, while the periodicity of K(Γn, κ)
is 2pn − 2.

The unit in SpK(n) is the K(n)-local sphere, denoted LK(n)S
0. Being the unit, LK(n)S

0

is the initial object in CAlg(SpK(n)), so there is a canonical map of commutative algebras
LK(n)S

0 → En. Since Gn acts on En through commutative algebra automorphisms, this map
is Gn-equivariant for the trivial action on LK(n)S

0. A result of Devinatz and Hopkins [DH04],
reinterpreted in Rognes’ framework of spectral Galois extensions [Rog08], says that the unit map
LK(n)S

0 → En exhibits En as a pro-Galois extension of LK(n)S
0 in SpK(n), with Galois group

Gn. Concretely, this means that we have canonical equivalences of commutative ring spectra

LK(n)S
0 ' EhGn

n and LK(n)(En ⊗ En) ' Ccts(Gn, En), (2.3.1)

where Ccts(Gn, En) denotes the ring spectrum of continuous functions on Gn with coefficients in
En. This enables us to run Galois descent along LK(n)S

0 → En. Form the associated K(n)-local
cosimplicial Amitsur complex

LK(n)S
0 → E⊗̂•+1

n := LK(n)

(
En ⇒ En ⊗ En →→→ E⊗3

n . . .
)
, (2.3.2)

where we have omitted the degeneracy maps from the display. Applying the homotopy groups
to the resolution (2.3.2) and using (2.3.1) to identify the abutment and E2-page, we obtain a
Bousfield–Kan spectral sequence of signature

Es,t2
∼= Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0, (2.3.3)

where H∗cts denotes cohomology with continuous cocycles.
Since Gn has finite virtual cohomological dimension, this spectral sequence provides an ex-

cellent approximation to the homotopy groups of LK(n)S
0: it converges strongly with a finite

horizontal vanishing line on some finite page, i.e., there exists r ≥ 2 and some N > 0 such
that Es,tr = 0 for all s > N . In fact, if p is odd and 2(p − 1) ≥ n2, then we may take r = 2
and N = n2. The spectral sequence (2.3.3), often simply referred to as “the” descent spectral
sequence in chromatic homotopy theory, provides a gateway between stable homotopy theory
and p-adic geometry.

2.4. The chromatic splitting conjecture and the vanishing conjecture. Computational
evidence at low heights n ≤ 2 suggests that the continuous cohomology of the action of Gn on
W ⊆ π0En largely controls the behavior of π∗LK(n)S

0, as we shall now explain. Recall the
isomorphism (1.0.1)

H∗cts(Gn,W )⊗Zp
Qp ∼= ΛQp

(x1, x2, . . . , xn),
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where the latter is the exterior Qp-algebra on generators xi in degree 2i − 1. The relevance of
these classes for stable homotopy theory was first realized by Morava, who also exhibited explicit
cocycle representatives for the xi, see [Mor85, Remark 2.2.5].

Each of the classes xi can be lifted1 to a class x̃i in the integral cohomology ring H∗cts(Gn,W ).
Let

ϕ : H∗cts(Gn,W )→ H∗cts(Gn, π0En) ∼= E∗,02 (2.4.1)

be the natural map induced from the inclusion W ↪→ A ∼= π0En.
Hopkins’ chromatic splitting conjecture, recorded in [Hov95], predicts that the classes x̃i carry

all the relevant information about the homotopy groups of LK(n)S
0; more precisely:

Conjecture 2.4.2 (Chromatic splitting conjecture). For p odd and each i = 1, . . . , n, we have
the following behavior.

(1) For each i = 1, . . . , n, the class ϕ(x̃i) survives the spectral sequence (2.3.3), thereby giving
rise to a homotopy class

ei ∈ π1−2iLK(n)S
0,

or all the same, a map ei : S1−2i
p → LK(n)S

0.
(2) The composition S1−2i

p
ei→ LK(n)S

0 → Ln−1LK(n)S
0 factors through a map ei : Ln−iS1−2i

p →
Ln−1LK(n)S

0.
(3) The ei induce an equivalence of spectra

Ln−1LK(n)S
0 ∼=

n∧
i=1

(Ln−iS
1−2i
p ) :=

⊕
0≤j≤n

1≤i1<...<ij≤n

(
j⊗

k=1

Ln−ikS
1−2ik
p

)
,

where the right hand side is indexed on the Zp-module generators of the exterior algebra
ΛZp

(ē1, ē2, . . . , ēn).

A more refined formulation of the conjecture as well as the necessary modifications for the
prime 2 can be found in [BGH22]. It has been verified by explicit computation of both sides
for heights n ≤ 2 and all primes p. After tensoring with Q, the chromatic splitting conjecture
predicts that

Q⊗ π∗LK(n)S
0 ∼= ΛQp

(ē1, ē2, . . . , ēn), |ei| = 1− 2i. (2.4.3)

Indeed, there are natural equivalences Q⊗ LiX ' Q⊗X for all spectra X and all i ≥ 0, so (3)
of Conjecture 2.4.2 rationalizes to (2.4.3). Further chromatic consequences of Conjecture 2.4.2
can be found in [BB20] and [Mor14].

A related question concerns the map ϕ appearing in (2.4.1). The following conjecture2 was
formulated by Beaudry, Goerss, and Henn in [BGH22, Page 3].

Conjecture 2.4.4 (Vanishing conjecture). The inclusion of coefficients W ↪→ π0En induces an
isomorphism H∗cts(Gn,W ) ∼= H∗cts(Gn, π0En).

Conjecture 2.4.4 has been verified for all n ≤ 2 and for all primes p; moreover, in these cases,
it does not need to be modified for p = 2, but rather accounts for the additional complications
witnessed there. If correct, this conjecture would substantially simplify the task of understanding
π∗LK(n)S

0. Our goal in this paper is to prove (2.4.3) for all heights n and all primes p.

1In the chromatic practice, there are certain preferred choices of lifts, but these will not matter for our purposes
here. For details, we refer to [Hov95].

2The name comes from the equivalent formulation that H∗cts(Gn, π0En/W ) = 0.
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2.5. Power operations and the splitting of W → A. Fix a prime p and a height n ≥ 1, and
let E = En be Morava E-theory. Thus A = E0 ∼= W Ju1, . . . , un−1K, where W = W (Fp). For the
first time in the article, we introduce new material.

Our proof of Theorem A begins with the following proposition.

Proposition 2.5.1. The inclusion W ↪→ A admits a continuous Gn-equivariant (additive) split-
ting. In other words, there is a Gn-equivariant decomposition of topological abelian groups

A ∼= W ⊕Ac.

Our proof of Proposition 2.5.1 uses input from homotopy theory, namely the power operations
on Morava E-theory. We will briefly recall this theory here:

Power operations on Morava E-theory are a consequence of the E∞-ring structure on E, which
endows E with multiplication maps

(E⊗m)hΣm → E.

This structure is essentially unique by a theorem of Goerss, Hopkins, and Miller [GH04]. For
m ∈ N, there are natural multiplicative operations

Pm : E0 → E0(BΣm).

These are defined to be the composite [S0, E] → [(S0)hΣm
, (E⊗m)hΣm

] → [(S0)hΣm
, E], where

the first map is given by applying the mth tensor power (recalling that S0 is the unit) and
applying homotopy orbits for the resulting Σm-action, and the second map makes use of the
E∞-ring structure on E.

The operation P 0 is the constant function 1 and the operation P 1 is the identity map on
E0. Since the E-cohomology of a symmetric group is a free E0-module, there is a Kunneth
isomorphism

E0(BΣi ×BΣj) ∼= E0(BΣi)⊗E0 E0(BΣj).

Power operations have the property that, if i+ j = m, then the composite

E0 Pm

−−→ E0(BΣm)→ E0(BΣi ×BΣj) ∼= E0(BΣi)⊗E0 E0(BΣj)

is P i ⊗ P j .
Although Pm is not additive, by [BMMS86, Chapter VIII], the ideal Itr ⊆ E0(BΣm) generated

by the images of the transfer maps along Σi × Σj ⊆ Σm has the property that

Pm/Itr : E0 → E0(BΣm)/Itr

is a ring map. A theorem of Strickland’s [Str98] proves that E0(BΣm)/Itr is a finitely generated
free E0-module and that there is a canonical isomorphism of formal schemes over Lubin–Tate
space

Spf(E0(BΣm)/Itr) ∼= Subm(Γ̄),

where Γ̄ is the universal deformation of the formal group Γ and Subm(Γ̄) is the formal scheme
classifying subgroup schemes of order m in Γ̄. Note that no such subgroup exists unless m = pk

for some k and thus Subm(Γ̄) = ∅ if m 6= pk. Ando, Hopkins, and Strickland [AHS04, Section
3] proved that the map Pm/Itr classifies the deformation associated to the quotient of Γ̄ by the
universal subgroup of order m. In particular, they show that Pm/Itr is a continuous ring map
for all m ∈ N.

Lemma 2.5.2. The power operations on Morava E-theory are continuous with respect to the
In-adic topology on E0 and E0(BΣm).
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Proof. The proof makes use of the fact that Pm/Itr is continuous as well as an application of
Hopkins–Kuhn–Ravenel character theory [HKR00].

Assume that m =
∑j
i=0 aip

i is the base p expansion of m. The restriction map

E0(BΣm)→
j⊗
i=0

E0(BΣpi)
⊗ai

is injective as E is p-local and
∏j
i=0 Σ×ai

pk
contains the Sylow p-subgroup of Σm. All of the tensor

products are over E0. We are reduced to proving that P p
k

is continuous.
For 0 ≤ i ≤ k, consider the E0-algebra map

E0(BΣpk)→ (E0(BΣpi)/Itr)
⊗pk−i

given by restriction to Σ×p
k−i

pi , applying the Kunneth isomorphism, and then taking the quotient

by the ideal Itr. The composite of the power operation P p
k

with this map is continuous since it
may be identified with the map (P p

i

/Itr)
⊗pk−i

.
Taking the product of these maps for all 0 ≤ i ≤ k, we get a map

E0(BΣpk)→
k∏
i=0

(E0(BΣpi)/Itr)
⊗pk−i

.

Hopkins–Kuhn–Ravenel character theory implies that this map is injective. Since the composite
of the pkth power operation with this map is continuous, the pkth power operation is continuous.

�

Proof of Proposition 2.5.1. Recall that A = E0. Let Pm : E0 → E0(BΣm) be the mth power
operation, determined by the E∞-ring structure on E. Let

βm : E0 Pm−−→ E0(BΣm)
TreΣm−−−→ E0

be the composite of the mth power operation with the K(n)-local transfer map along the sur-
jection from Σm to the trivial group.

The standard relations among the power operations implies that the formal sum β(x) =∑
m≥0 βmx

m, considered as map E0 → E0JxK, satisfies β(x + y) = β(x)β(y). Since β0(a) = 1

and β1(a) = a for all a ∈ E0, the map β factors through a homomorphism from the additive
group E0 to the subgroup 1 + xE0JxK of E0JxK×. Now we may quotient the target by the
maximal ideal in E0 to obtain a map E0 → FpJxK that sends addition to multiplication. The big
Witt vectors Wbig(Fp) may be canonically identified (additively) with the abelian group of units
in FpJxK with constant coefficient 1 under multiplication. Further, the p-typical Witt vectors
W = W (Fp) splits off of the big Witt vectors. The quotient map (1 + xFpJxK) ∼= Wbig(Fp)→ Fp
is given by reading off the coefficient of x, and this quotient map factors through W . The maps
constructed so far fit into a diagram:

E0 β
//

$$

E0JxK // FpJxK

**
1 + xE0JxK //

?�

OO

1 + xFpJxK ∼= Wbig(Fp) //
?�

OO

W // Fp

Let γ : E0 → W be the composition of the maps appearing in the diagram. Precomposing
with the inclusionW → E0, we obtain an additive endomorphism f ofW . This is a map between
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p-adically complete modules and it is the identity modulo p; therefore f is an automorphism.
The map α := f−1 ◦ γ is therefore a section of W → E0.

Further, the maps that go into the construction of α are Gn-equivariant. For Pm, this follows
from the fact that Gn acts on E via E∞-ring maps. The transfer map is Gn-equivariant as it
is given by restriction along a map of spectra (alternatively by the formula for this transfer and
the action of Gn on the level of characters). �

Remark 2.5.3. We do not know if the map f : W → W appearing in the proof above is the
identity.

Corollary 2.5.4. The inclusion W ↪→ A induces a split injection H∗cts(Gn,W ) → H∗cts(Gn, A)
with cokernel H∗cts(Gn, Ac).

Theorem B has thus been reduced to the statement that H∗cts(Gn, Ac) is p-power torsion. This
will be established in the course of the next sections.

2.6. The proof of Theorem A assuming Theorem B. We finish this section by explaining
how to deduce Theorem A from Theorem B. The key point is that, rationally, the cohomology of
the stabilizer group action on the homotopy groups of Morava E-theory simplifies dramatically
in non-zero degrees:

Lemma 2.6.1. For all t 6= 0 and all s ∈ Z, we have Hs
cts(Gn,Q⊗ πtEn) = 0.

Proof. Recall that the (extended) Morava stabilizer group Gn can be described naturally as a
semidirect product

1 // O×D
// Gn ' O×D o Gal(Fp/Fp) // Gal(Fp/Fp) // 1, (2.6.2)

where O×D is isomorphic to the automorphism group of our chosen formal group law Γn over Fp.
The center of O×D is isomorphic to Z×p and we may consider the central subgroup Zp ⊂ Z×p P O×D,
which we can take to be generated by the element 1 + p ∈ Z×p . Fixing some integer t, the
associated convergent Lyndon–Hochschild–Serre spectral sequence for continuous cohomology
(e.g., [Ser02, Section I.2.6(b)]) has signature

Hp
cts(O

×
D/Zp, H

q
cts(Zp,Q⊗ πtEn)) =⇒ Hp+q

cts (O×D,Q⊗ πtEn).

It is thus enough to show that
Hq

cts(Zp,Q⊗ πtEn) = 0

for t 6= 0. To this end, we use that the generator of Zp acts by multiplication by (1 + p)t, see for
example [BB20, Secton 3.3.2(c)]. The continuous Zp-cohomology of Q⊗ πtEn is thus computed
via the complex

Q⊗ πtEn
(1+p)t−1−−−−−−→ Q⊗ πtEn.

Since Q⊗ πtEn is a Qp-vector space, when t 6= 0 the action by (1 + p)t − 1 is invertible, so the
complex is acyclic. We then conclude by another application of the Lyndon–Hochschild–Serre
spectral sequence, this time for the extension (2.6.2). �

Proposition 2.6.3. Theorem B implies Theorem A.

Proof. We use the Devinatz–Hopkins spectral sequence (2.3.3):

Es,t2
∼= Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0.

This spectral sequence converges strongly and collapses on a finite page with a horizontal van-
ishing line. On the one hand, it follows that rationalization yields another strongly convergent
spectral sequence

Q⊗ Es,t2
∼= Hs

cts(Gn,Q⊗ πtEn) =⇒ Q⊗ πt−sLK(n)S
0.
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Here, the identification of the E2-term uses that Gn is a compact group so that rationalization
commutes with taking continuous cohomology; see for example [BP21, Corollary 12.9]. On
the other hand, Lemma 2.6.1 implies that the rationalized Devinatz–Hopkins spectral sequence
collapses on the E2-page, resulting in a graded isomorphism

H∗cts(Gn,Q⊗ π0En) ∼= Q⊗ π−∗LK(n)S
0.

Since the spectral sequence is multiplicative, this is in fact an isomorphism of graded rings.
Theorem B combined with Lazard’s theorem [Laz65] as stated in Lemma 3.8.4 identifies the left
hand side as

H∗cts(Gn,Q⊗ π0En) ∼= H∗cts(Gn,Q⊗W ) ∼= ΛQp
(x1, x2, . . . , xn),

with xi in cohomological degree 2i− 1. This gives Theorem A. �

3. Arithmetic prerequisites

To complete the proof of Theorem B, we must show that the complement of the split injection

H∗cts(Gn,W )→ H∗cts(Gn, A)

is pN -torsion for some N ≥ 0. Our proof lies entirely within the domain of p-adic geometry. In
this section, we review some fundamentals of p-adic geometry and condensed mathematics and
how these interact with each other. At the end of the section, we offer a summary of the proof
of Theorem B.

3.1. Adic spaces. We offer the reader a brief summary of the necessary techniques from non-
archimedean analytic geometry, starting with Huber’s category of adic spaces [Hub94]. This
category contains all formal schemes, rigid-analytic varieties, and perfectoid spaces. For a more
leisurely exposition, see the last named author’s chapter in [BCKW19].

A topological ring A is a Huber ring if it contains an open subring A0 whose topology is
induced by a finitely generated ideal I ⊂ A0. A subset S of a Huber ring A is bounded if for
every n ≥ 0 there exists N ≥ 0 such that INS ⊂ In. A single element f ∈ A is power-bounded
if {fn}n≥1 is bounded. A Huber pair is a pair (A,A+) consisting of a Huber ring A and an
open and integrally closed subring A+ ⊂ A whose elements are power-bounded. A continuous
valuation on a Huber ring A is a continuous multiplicative function | | : A→ H ∪ {0}, where H
is a totally ordered abelian group (written multiplicatively). The adic spectrum Spa(A,A+) is
the set of equivalence classes of continuous valuations satisfying |A+| ≤ 1. It is endowed with
the topology generated by rational subsets of the form

U = U

(
f1, . . . , fr

g

)
=

{
| | ∈ Spa(A,A+)

∣∣∣∣ |fi| ≤ |g| 6= 0, i = 1, . . . , r

}
for f1, . . . , fr ∈ A generating an open ideal and g ∈ A. Then Spa(A,A+) is quasi-compact.

One defines presheaves of rings O+
X ⊂ OX on X = Spa(A,A+) as follows. For the rational

subset U above, we declare that OX(U) is the completion of A[fi/g] with respect to the topology
in which A0[fi/g] (with its I-adic topology) is an open subring, and O+

X(U) is the completion of
the integral closure of A+[fi/g] in A[fi/g]. Then (OX(U),O+

X(U)) is another Huber pair. For
certain classes of Huber pairs (A,A+) (including all which are considered in this article), the
presheaves OX and O+

X are sheaves. In such cases, the triple (X,OX ,O
+
X) is an affinoid adic

space. A general adic space is a triple (X,OX ,O
+
X) which is locally isomorphic to an affinoid adic

space. The sheaves OX and O+
X are the structure sheaf and integral structure sheaf, respectively.

As a basic example, if X = Spa(W,W ), then OX = O+
X and the ringed space (X,OX) is

isomorphic to SpecW . In particular it has two points: a generic point lying in Spa(K,W )
(which extends to the usual absolute value on K) and a special point (which satisfies |p| = 0).
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A rigid-analytic space over K is an adic space over Spa(K,W ) that is locally isomorphic to an
affinoid adic space of the form Spa(A,A+), where (A,A+) obeys a certain finiteness condition.
Namely, A is isomorphic to a ring quotient of a Tate algebra K 〈T1, . . . , Td〉, and A+ is equal to
the subring of power-bounded elements of A. A special case is A = K 〈T1, . . . , Td〉, in which case
Spa(A,A+) is the closed ball of radius 1. (Chronologically, Tate’s theory of rigid-analytic spaces
long predates Huber’s theory of adic spaces; rigid-analytic spaces as Tate defined them sit inside
of adic spaces over Spa(K,W ) as a full subcategory, so there is no harm in thinking of them this
way.)

Fix a continuous real-valued valuation | | representing the sole point of Spa(K,W ), so as to
fix a value of |p|.

Example 3.1.1 (The rigid-analytic open ball). Let A = W JT1, . . . , TdK, and letBd = Spa(A,A),
the formal d-dimensional unit ball over Spa(W,W ). Let Bd,◦ be the fiber of Bd over the generic
point of Spa(W,W ); i.e., Bd,◦ is the locus where |p| 6= 0. Let us observe that Bd,◦ is exhausted by
affinoid (closed) balls over K. For each real number r of the form r = |p|1/n with n = 1, 2, 3, . . . ,
let Bdr be the following rational subset of Bd:

Bdr = U

(
Tn1 , . . . , T

n
d , p

p

)
.

Then Bdr is an affinoid rigid-analytic space over K. We have

Bd,◦ = lim−→
r<1

Bdr ,

since for each continuous valuation on A with |p| 6= 0, we must have |Ti|n ≤ |p| for n sufficiently
large. Therefore Bd,◦ is a rigid-analytic space over K.

For a rigid-analytic space X/K, there is an important distinction between H0(X,OX) and
H0(X,O+

X)[1/p]. When X is affinoid, these agree, but in general they are quite different. In the
situation of the rigid-analytic open ball, we have

H0(Bd,◦,O+
X)[1/p] = W JT1, . . . , TdK[1/p]

is the ring of power series in KJT1, . . . , TdK which are bounded on the open unit ball. Whereas,
H0(Bd,◦,OX) is the much larger ring of power series in KJT1, . . . , TdK which converge on the
open unit ball.

3.2. Condensed mathematics. When G is a topological group and M is a topological abelian
group admitting a continuous G-action, continuous cohomology groups Hi

cts(G,M) are defined
using the complex of continuous cocycles. At this level of generality, however, one has no abelian
category of topological abelian groups, and so M 7→ Hi

cts(G,M) has no interpretation as the ith
derived functor of fixed points M 7→MG.

The language of condensed mathematics [CS] is well-suited to resolve this issue in all contexts
which will arise in this article. We quickly review the main points of the theory, ignoring set-
theoretic issues throughout.3 The pro-étale site of a point ∗proét is the category of profinite sets
with jointly surjective continuous maps as the covers. A condensed set is a sheaf of sets on ∗proét.
Similarly there are condensed groups, rings, etc. There is a functor X 7→ X from topological
spaces/groups/rings to condensed sets/groups/rings, viaX(S) = Ccts(S,X), meaning continuous
maps S → X. This functor is fully faithful when restricted to compactly generated topological
spaces [CS, Proposition 1.7].

Let Cond(Ab) be the category of condensed abelian groups. Then Cond(Ab) is an abelian
category containing all limits and colimits [CS, Theorem 1.10]. It has a symmetric monoidal

3They can be dealt with as in [CS, Lecture I].
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tensor product M⊗N and an internal Hom-functor Hom(M,N) related by the adjunction

Hom(P,Hom(M,N)) ∼= Hom(P⊗M,N).

The forgetful functor Cond(Ab)→ Cond(Set) has a left adjoint X 7→ Z[X], the “free condensed
abelian group on X”. In the case X = S for S profinite, we abuse notation and write Z[S] for
Z[S].

The category Cond(Ab) has enough projectives [CS, Theorem 2.2], so we can form its derived
category D(Cond(Ab)). Then D(Cond(Ab)) admits a derived tensor product ⊗ and a derived
internal hom functor RHom satisfying the usual adjunction relation.

In the language of condensed mathematics, the notion of completeness goes by the term “solid”.
For a profinite set S = lim←−Si with each Si finite, the free solid abelian group on S is defined as

Z[S]� = lim←−Z[Si],

where Z[Si] is the free abelian group on Si, considered as a discrete topological group. A solid
abelian group is a condensed abelian group M such that for all profinite sets S, any morphism
S → M extends uniquely to a morphism Z[S]� → M. Let Solid denote the category of solid
abelian groups; by [CS, Theorem 5.8], Solid is closed under all limits and colimits in Cond(Ab).
Then Solid is an abelian subcategory of Cond(Ab). The functor D(Solid) → D(Cond(Ab)) is
fully faithful. For an object C of D(Cond(Ab)), the following are equivalent:

(1) C lies in the essential image of D(Solid)→ D(Cond(Ab)).
(2) Hi(C) is a solid abelian group for all i ∈ Z.
(3) For all profinite sets S, the natural map

RHom(Z[S]�,C)→ RHom(Z[S],C)

is an isomorphism.
The inclusion Solid ⊂ Cond(Ab) admits a left adjoint M 7→ M�, the “solidification functor”;

this is the unique colimit-preserving extension of Z[S] 7→ Z[S]� [CS, Theorem 5.8]. There is a
unique symmetric monoidal tensor product M⊗� N such that M 7→M� is symmetric monoidal
[CS, Theorem 6.2].

The following lemma shows how solidity and completeness are related.

Lemma 3.2.1. Let M be a topological abelian group which is separated and complete for a linear
topology. Then M is a solid abelian group.

Proof. The hypothesis means there is a directed system of open subgroups Mn ⊂ M inducing
the topology on M , such that the map M → lim←−M/Mn is an isomorphism.

Let S = lim←−Si with each Si finite, and let f : S → M be continuous. For each n, the map
S → M/Mn is locally constant, so it must factor through Si → M/Mn for some i = i(n). This
map can be extended to a morphism of condensed abelian groups Z[Si]→M/Mn. After passage
to the limit in n, we obtain a morphism Z[S]� →M . �

3.3. Solid complexes with G-action. Now suppose G is a condensed group. A G-action on a
condensed abelian group M is a morphism G×M→M satisfying the usual axioms.

Lemma 3.3.1. Let M be a topological abelian group which is separated and complete for a linear
topology. Let G be a profinite group which acts continuously on M . Then M is a solid abelian
group with G-action.

Proof. The claim in the lemma is that the group action G ×M → M can be upgraded to an
action G×M →M on the level of condensed sets. That is, we need for every profinite S = lim←−Si
an action

Ccts(S,G)× Ccts(S,M)→ Ccts(S,M)



ON THE RATIONALIZATION OF THE K(n)-LOCAL SPHERE 17

which is functorial in S. Therefore let f : S → G and h : S → M be continuous. Since M ∼=
lim←−M/Mn for a directed system of open subgroups Mn, it is enough to produce an action with
values in Ccts(S,M/Mn) compatibly in n.

The continuity of the action of G on M means exactly that there exists an index N and an
open subgroupH ⊂ G such thatHMN ⊂Mn. Since h is continuous, it is locally constant modulo
MN ; that is, the composition S → M → M/MN factors through hi : Si → M/MN for some i.
After replacing i, we may also assume that f : S → G → G/H factors through fi : Si → G/H.
Then the sum

∑
s∈Si

fi(s)h(s) is well-defined inM/MN ; this is the required action of f on h. �

For a profinite group G, let SolidG be the category of solid abelian groups admitting an action
of G. Then SolidG is an abelian category.

Lemma 3.3.2. Let G be a profinite group. Consider the functor of fixed points SolidG → Solid
defined by M 7→ MG, i.e., the right adjoint to the trivial action functor Solid → SolidG. Let
C 7→ RΓ(G,C) be its derived functor D(SolidG)→ D(Solid), and let Hi(G,C) = RiΓ(G,C).

(1) For an object C of D(Solid), the object RΓ(G,C) is the totalization of the cosimplicial
object

C→ RHom(Z[G],C) ⇒ RHom(Z[G2],C)→→→ · · · ,
where the degeneracy maps are omitted from the notation.

(2) In particular, if M is an abelian group which is separated and complete for a linear
topology, and G acts continuously on M , then

Hi(G,M) ∼= Hi
cts(G,M).

Here Hi
cts(G,M) is continuous cohomology.

Proof. The idea is to construct a simplicial resolution of the trivial module Z in SolidG. Let

Z[G]� = lim←−
H

Z[G/H]

be the “solid Iwasawa algebra”; here H runs over open subgroups of G. We claim that Z[G]�

is projective in SolidG. Indeed, let M → Z[G]� be a surjection; we want to produce a section.
Since M is solid, it is enough to produce a morphism G → M such that the composition G →
M → Z[G]� is the natural map. The required morphism is g 7→ gm, where m ∈ M(∗) lifts the
identity section ∗ → Z[G]�.

Similarly, the solid Iwasawa algebras Z[Gn]� are projective. Thus we have the usual simplicial
resolution of the trivial G-module Z:

· · · →→→ Z[G2]� ⇒ Z[G]� → Z. (3.3.3)

If C is an object of D(SolidG), then RΓ(G,C) is the totalization of the cosimplicial object with
terms RHom(Z[Gn]�,C), obtained from (3.3.3) by applying the functor RHom(−,C). Since C is
solid, the latter is isomorphic to RHom(Z[Gn],C). This is (1).

In the case C = M described in (2), we have (since Z[G] is a free condensed abelian group)

RHom(Z[Gn],M) ∼= Hom(Gn,M) ∼= Ccts(G
n,M),

so that RΓ(G,M) is the totalization of the condensed version of the cosimplicial resolution which
computes continuous cohomology. Therefore Hi(G,M) is the condensed version of Hi

cts(G,M).
�

Lemma 3.3.2 shows that as long asM is separated and complete for a linear topology, the con-
tinuous cohomology Hi

cts(G,M) really is the derived functor of G-fixed points in an abelian cate-
gory. This allows us to seamlessly use the language of derived categories to compute Hi

cts(G,M).
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Notation 3.3.4 (Continuous homotopy fixed points). Let G be a profinite group. We write

D(SolidG) → D(Solid)

C 7→ ChG

for the functor RΓ(G,C) described in Lemma 3.3.2; i.e., the derived functor of M 7→ MG.
Similarly, if M is a topological abelian group which is separated and complete for a linear
topology, and G acts continuously on M , then we write MhG for RΓ(G,M).

By Lemma 3.3.2, MhG is a complex of solid abelian groups which computes Hi
cts(G,M); it

would also be appropriate to use the notation RΓcts(G,M) forMhG. If H ⊂ G is a closed normal
subgroup, then MhH is an object of D(SolidG/H), and then the quasi-isomorphism

MhG ∼=
(
MhH

)h(G/H)

formally implies the Hochschild–Serre spectral sequence in continuous cohomology:

Hi
cts(G/H,H

j
cts(H,M)) =⇒ Hi+j

cts (G,M).

Crucially, we can apply this picture to the example where M = A is the Lubin–Tate ring and
G = Gn is the Morava stabilizer group. Another important example we will encounter occurs
when K is a nonarchimedean local field, G = Gal(K/K), and M = OC , the valuation ring of the
completion C of an algebraic closure K of K.

We will find the following “projection formula” useful, and omit its proof.

Lemma 3.3.5. Let M,N ∈ D(SolidG) be objects such that the action of G on M is trivial.
There is a canonical isomorphism in D(Solid):

M ⊗� NhG ∼−→ (M ⊗� N)hG.

3.4. p-adic solid complexes. We gather some results here regarding the notion of derived p-
completeness (for p a prime number), in the contexts of both D(Ab) and D(Cond(Ab)). Many
of these results could be extended to the setting of derived I-completeness of R-modules, where
I is a finitely generated ideal in a ring R. The main result Lemma 3.4.8 below is that D(Solid)
contains the category D(Ab)p of derived p-complete complexes as a fully faithful subcategory.

First we discuss the notion of derived p-completeness in D(Ab), for which some standard
results are found in [Aut, Tag 091N].

Definition 3.4.1. An object A of D(Ab) is p-complete (the word “derived” being understood) if
Hom(B,A) ∼= 0 for all B ∈ D(Ab) such that B⊗Z/pZ ∼= 0. Let D(Ab)p be the full subcategory
of D(Ab) consisting of p-complete objects. (Here and elsewhere we write ⊗ instead of ⊗L for the
symmetric monoidal operation on D(Ab).)

Remark 3.4.2. This definition makes it clear that D(Ab)p is exactly the Bousfield localization
of D(Ab) at the object Z/pZ, as described in Section 2. It suffices to check the condition in the
definition with the object B = Z[1/p].

The inclusion D(Ab)p ⊂ D(Ab) has a left adjoint A 7→ Â, namely:

Â = lim←−A/p
n.

(Here A/pn is the cofiber of pn : A→ A.) There is a unique symmetric monoidal operation ⊗̂ on
D(Ab)p which makes A 7→ Â a symmetric monoidal functor.

It is straightforward to extend these notions to D(Cond(Ab)).

Definition 3.4.3. An object A of D(Cond(Ab)) is p-complete if Hom(B,A) = 0 for all B ∈
D(Cond(Ab)) with B ⊗ Z/pZ ∼= 0. Let D(Cond(Ab))p be the full subcategory of D(Cond(Ab))
consisting of p-complete objects.



ON THE RATIONALIZATION OF THE K(n)-LOCAL SPHERE 19

Lemma 3.4.4. Regarding the category D(Cond(Ab))p of p-adically complete complexes of con-
densed abelian groups, we have:

(1) D(Cond(Ab))p is closed under limits.
(2) Suppose A ∈ D(Cond(Ab))p. If A/p ∼= 0, then A ∼= 0.
(3) The inclusion D(Cond(Ab))p → D(Cond(Ab)) admits a left adjoint A 7→ A∧p , namely:

A∧p = lim←−A/p
n.

Proof. For part (1): if Ai is a diagram in D(Cond(Ab))p, and B/p ∼= 0, then Hom(B, limAi) ∼=
lim Hom(B,Ai) ∼= 0, so that limAi lies in D(Cond(Ab))p.

For part (2): A/p ∼= 0 means that multiplication by p is an isomorphism on A, so that
Hom(Z[1/p], A) → Hom(Z, A) ∼= A is an isomorphism. On the other hand, Hom(Z[1/p], A) ∼= 0
by definition of derived p-completeness.

For part (3): it is enough to show that (a) A∧p is p-adically complete, and (b) if A is p-adically
complete, then A→ A∧p is an isomorphism.

For (a): We first claim A/pn is p-complete. Indeed, if B/p ∼= 0, then multiplication by pn is
an isomorphism on B, and thus on Hom(B,A). As D(Cond(Ab))p is closed under limits, it must
contain A∧p as well.

For (b): Suppose A is p-adically complete, and let F be the fiber of A→ A∧p . Then F is also
p-adically complete (being a limit in D(Cond(Ab))p), and so by part (2) it suffices to show that
F/p ∼= 0. But this is clear, as F is the limit of multiplication by p on A. �

At this point we start relating the notions of p-completeness in D(Ab) and D(Cond(Ab)).
First we need a notion of discreteness for objects of the latter category.

Definition 3.4.5. Let Γ∗ : Cond(Ab) → Ab be the functor which evaluates an object on the
point: Γ∗(A) = A(∗). Then Γ∗ is right adjoint to the pullback functor Γ∗ which sends an abelian
group A to the constant condensed abelian group A. Both Γ∗ and Γ∗ are exact (the latter because
all covers of ∗ have a section), so we continue to write Γ∗ and Γ∗ for their derived functors.

For A ∈ D(Cond(Ab)) we let Aδ = Γ∗Γ∗(A) be the “discretization” of A. The counit of the
adjunction gives rise to a natural map Aδ → A. If this map is an isomorphism we say that A is
discrete.

Lemma 3.4.6.
(1) Discretization is t-exact. That is, if A lies in the heart D(Cond(Ab))♥ ' Cond(Ab),

then Aδ ∈ D(Cond(Ab))♥ as well.
(2) The subcategory of discrete objects in D(Cond(Ab)) is closed under fibers, cofibers and

retracts.
(3) If A ∈ D(Ab), then Γ∗A is discrete.
(4) An object A ∈ D(Cond(Ab)) has the property that, for all i ∈ Z, Hi(A) is discrete if and

only if A is discrete.

Proof. (1) Since Γ∗ is given by pulling back sheaves, it is t-exact. Since Γ∗ is corepresented by
Z, which is projective as a condensed abelian group, Γ∗ is also t-exact. For (2), this follows
from the fact that both Γ∗ and Γ∗ are exact, i.e., they both commute with fibers, cofibers and
retracts. For (3), this is equivalent to the statement that Γ∗ is fully faithful. This is in turn the
same as the statement that the unit of the adjunction is an equivalence, and this is true. The
final statement follows from the previous items. �

Definition 3.4.7. An object A ∈ D(Cond(Ab)) is called p-adic if it is p-complete and A⊗ Z/p
is discrete.
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Lemma 3.4.8. Consider the functor

D(Ab) → D(Cond(Ab))

A 7→ (Γ∗A)∧p = lim←−Γ∗(A)/pn

It factors through an equivalence between D(Ab)p and the full subcategory of D(Cond(Ab))p
consisting of the p-adic objects.

Finally, p-adic objects in D(Cond(Ab))p are solid, and the functor D(Ab)p → D(Cond(Ab))p
is symmetric monoidal with respect to ⊗̂ and ⊗�.

Proof. We have
(Γ∗A∧p )∧p = lim←−A

∧
p /p

n ∼= lim←−A/p
n ∼= (Γ∗A)∧p ,

so the functor factors through A 7→ A∧p . We need to check that (Γ∗A)∧p is p-adic. It is p-complete
because

Hom(Z[1/p], (Γ∗A)∧p ) = lim←−Hom(Z[1/p],Γ∗(A)/pn) ∼= 0,

and (Γ∗A)∧/p ∼= Γ∗(A/p) is discrete; therefore it is p-adic. The quasi-inverse functor carries a
p-adic object A ∈ D(Cond(Ab)) onto Γ∗A.

The object (Γ∗A)∧p is solid because it is a limit of discrete objects Γ∗A/pn, which are all
solid. The claim about the functor being symmetric monoidal follows from applying the same
fact about Γ∗ to objects modulo pn, and then taking the limit. �

Given a derived p-complete abelian group A with a continuous action of a profinite group G,
Lemma 3.3.2 (2) implies that we can consider continuous cohomology as the cohomology groups
of the functor (−)hG applied to (Γ∗A)∧p . We get the same identification for complexes of derived
p-complete continuous G-modules.

3.5. Sheaves of condensed abelian groups. Let X be a site, and let A be a sheaf of topo-
logical abelian groups on X. This means in particular that if {Ui} is a cover of an object U in
X, then

A(U)→
∏
i

A(Ui) ⇒
∏
i,j

A(Ui ∩ Uj)

is an equalizer diagram in the category of topological abelian groups.
In this situation one would like the cohomology RΓ(X,A) to carry a topology, and indeed this

is possible using condensed mathematics. Define a presheaf Acond of condensed abelian groups
on X by setting

Acond(U) = A(U)

for every object U of X. Then in fact Acond is a sheaf, which we call the condensed enhancement
of A. This follows from the fact that A 7→ A is limit-preserving since it admits a left adjoint (see
[CS, Proposition 1.7]); in particular it preserves equalizers.

From here we can form the condensed cohomologyRΓ(X,Acond) ∈ D(Cond(Ab)) as the derived
global sections of Acond. This is a condensed enhancement of the cohomology RΓ(X,A) of the
underlying sheaf of abelian groups, in the sense that Γ∗RΓ(X,Acond) ∼= RΓ(X,A). Indeed, Γ∗
commutes with all limits and colimits and in particular simplicial limits and filtered colimits.
Thus, it commutes with the computation of derived global sections RΓ.

An important example for us comes from formal schemes. Recall the notion of an admissible
topological ring from [Aut, Tag0AHY]. For instance, if A is separated and complete with respect
to the topology induced by an ideal I, then A with its I-adic topology is an admissible topological
ring. An ideal of definition in an admissible topological ring is an open ideal I, such that every
neighborhood of 0 contains In for some I. An admissible topological ring always contains an
ideal of definition.
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For an admissible topological ring A and any ideal of definition I, the map SpecA/I → SpecA
factors through a homeomorphism from SpecA/I onto the subset Spf A ⊂ SpecA consisting of
open prime ideals. The structure sheaf OSpf A is defined as OSpf A = limI OSpecA/I , where the
limit runs over all ideals of definition for A. Here the limit is taken in the category of sheaves
of topological rings, where each OSpecA/I is discrete. Finally, a formal scheme is a pair (X,O)
consisting of a topological space X and a sheaf of topological rings O on X, such that (X,O) is
locally isomorphic to (Spf A,OSpf A) for an admissible topological ring.

For a formal scheme X, let Ocond be the condensed structure sheaf; that is, the condensed
enhancement of the structure sheaf O on X. Then RΓ(X,Ocond) is a ring object in D(Cond(Ab)).
We will need the condensed version of a basic acyclicity theorem for affine formal schemes.

Lemma 3.5.1. Let A be an admissible topological ring, so that X = Spf A is an affine formal
scheme. The condensed structure sheaf is acyclic on X, in the sense that the natural map A →
RΓ(X,Ocond) is an isomorphism.

Proof. Considering that OSpf A = limI OSpecA/I is a limit of sheaves of discrete rings, we have
that Ocond = limI OSpecA/I is a limit of sheaves of condensed abelian groups which are discrete.
Therefore

RΓ(X,Ocond) ∼= limI RΓ(SpecA/I,OSpecA/I).

We claim that RΓ(SpecA/I,OSpecA/I) ∼= A/I, which implies the lemma, since limI A/I ∼= A.
In other words, we have reduced the lemma to the case that A is discrete. By a standard

argument [Aut, Tag 01EW], it suffices to show that the Čech cohomology of Ocond is acyclic
with respect to the standard open cover of SpecA by opens {fi 6= 0} for elements f1, . . . , fn ∈ A
generating the unit ideal. Recall [Aut, Tag 01X9] the uncondensed version of this statement,
which is the statement that the extended Čech complex

0→ A→
∏
i

A[1/fi]→
∏
i,j

A[1/fifj ]→ · · ·

is exact. To get the condensed version, we need the fact that the functor X 7→ X from discrete
abelian groups to condensed abelian groups preserves exact complexes. This follows from the
formula X(S) = lim−→i

XSi whenever X is discrete and S = lim←−Si is profinite. �

3.6. Pro-étale cohomology of rigid-analytic spaces. Let X be a rigid-analytic space over
K. We swiftly recall some material from [Sch13a, §3,4] regarding the pro-étale site Xproét.

Objects in Xproét are formal limits U = lim←−Ui, where i runs over a cofiltered index set, the
Ui are rigid-analytic spaces étale over X, and each transition map Ui → Uj commutes with the
maps to X. It is required that Ui → Uj is finite étale and surjective for large i > j. For an
object U = lim←−Ui, let |U | = lim←−|Ui| be its underlying topological space. A covering in Xproét is
a family of pro-étale morphisms fj : Uj → U such that the underlying topological space |U | is
covered by the fj(|Uj |).

There is a natural morphism of sites ν : Xproét → Xét from the pro-étale site to the étale site.
The (uncompleted) integral structure sheaf O+ on Xproét is O+ = ν∗OXét

, which is to say that
if U = lim←−Ui is an object in Xproét, then

O+(U) = lim−→O+(Ui).

The (completed) integral structure sheaf Ô+ on Xproét is defined as the p-adic completion:

Ô+ = lim←−O+/pn,

and the structure sheaf is Ô := Ô+[1/p].
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The pro-étale cohomology Hi(Xproét, Ô
+) of a rigid-analytic space X will be of special interest

to us. To investigate it, we will make crucial use of perfectoid spaces. Let us recall the relevant
definitions from [SW20], adapted to the case where all structures live in characteristic 0. A
topological Qp-algebra R is perfectoid if the following conditions hold:

(1) R is uniform, meaning its subring R◦ of power-bounded elements is bounded,
(2) R◦ is p-adically complete,
(3) There exists an element $ ∈ R◦ such that $p|p holds in R◦, and such that the pth power

Frobenius map
R◦/$ → R◦/$p

is an isomorphism.
In particular there exists for all n ≥ 1 an element $n whose pnth power is the product of $
by a unit in R◦. A Huber pair (R,R+) is a perfectoid affinoid algebra over Spa(Qp,Zp) if R is
perfectoid. An adic space over Spa(Qp,Zp) is perfectoid if it admits a cover by adic spectra of
perfectoid affinoid algebras.

Suppose that X is a rigid-analytic space over a field containing Qp. We say that an object
U ∈ Xproét is affinoid perfectoid if U = lim←−Ui, where Ui = Spa(Ri, R

+
i ) is affinoid, and if R+

is the p-adic completion of lim−→R+
i , and R = R+[1/p], then R is a perfectoid K-algebra. More

generally, an object U ∈ Xproét is perfectoid if it admits an open cover by perfectoid affinoid
subobjects.

Perfectoid objects are useful to the calculation of Hi(Xproét, Ô
+) for the following two reasons:

(1) The affinoid perfectoid objects U ∈ Xproét form a basis for the topology [Sch13a, Propo-
sition 4.8].

(2) Suppose U ∈ Xproét is affinoid perfectoid. Then for all i ≥ 1, Hi(Uproét, Ô
+) is almost

zero, in the sense that it is annihilated by$n for all n [Sch13a, Lemma 4.10]. In particular
Hi(Uproét, Ô) = 0 for i ≥ 1.

The facts above suggest a strategy for computing Hi(Xproét, Ô
+): By (1), there exists a

pro-étale cover fi : Ui → X where each Ui is perfectoid affinoid, and by (2), RΓ(Xproét, Ô
+) is

“almost” computed by the Čech complex O+(X) →
∏
i O

+(Ui) →
∏
i,j O

+(Ui ×X Uj) → · · · .
The precise consequences for the pro-étale cohomology of rigid-analytic spaces will be reviewed
in Section 5.

It will be important to consider the pro-étale cohomology RΓ(Xproét, Ô
+) of a rigid-analytic

space as a complex of condensed abelian groups. Once again, we proceed by defining a condensed
enhancement Ô+

cond of Ô+. The integral structure sheaf O+ on an adic space is already a sheaf of
topological rings; therefore so are O+

Xét
, the uncompleted integral structure sheaf O+ = ν∗O+

Xét
,

and the completed structure sheaf Ô+ = lim←−O+/pn. Let Ô+
cond be the condensed enhancement

of Ô+. Then RΓ(Xproét, Ô
+
cond) is a condensed enhancement of RΓ(Xproét, Ô

+).
There is another natural way to define a condensed enhancement of RΓ(Xproét, Ô

+). Observe
that we have a morphism of sites:

λ : Xproét → ∗proét

Indeed, if S = lim←−Si is a profinite set, then X × S = lim←−X × Si is an object of Xproét. Con-
sequently, if F is a sheaf of abelian groups on Xproét, we may define Γcond(Xproét,F) = λ∗F,
an object of Cond(Ab), and RΓcond(Xproét,F) = Rλ∗F, an object of D(Cond(Ab)). Applied to
F = Ô+, we find a complex RΓcond(Xproét, Ô

+). In fact we have not found anything new:

Lemma 3.6.1. We have an isomorphism in D(Cond(Ab)):

RΓcond(Xproét, Ô
+) ∼= RΓ(Xproét, Ô

+
cond)
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Proof. Since Xproét admits a basis consisting of perfectoid affinoids, this reduces to the claim
that for all perfectoid affinoids U = Spa(R,R+) ∈ Xproét, we have a natural isomorphism in
Cond(Ab):

Γcond(U, Ô+) ∼= Ô+
cond(U)

This in turn reduces to the following calculation, for any profinite set S = lim←−Si:

H0(U × S, Ô+) ∼=
(

lim−→H0(U × Si, Ô+)
)∧

(p)

∼=
(

lim−→Ccts(Si, R
+)
)∧

(p)

∼= Ccts(S,R
+)

∼= Ô+
cond(U)(S)

In the penultimate step we used the fact that R+ is p-adically complete. This follows from
the fact that R◦ is p-adically complete (by definition), together with the fact that R◦/R+ is
p-torsion. For the claim that R◦/R+ is p-torsion: For f ∈ R◦ the sequence (pf)N converges
to 0 as N → ∞. Since R+ is open, we have (pf)N ∈ R+ for sufficiently large N . Since R+ is
integrally closed in R we have pf ∈ R+. (In fact R◦/R+ is almost zero.) �

In the context of the proof of Lemma 3.6.1 we have

Ccts(S,R
+) ∼= Hom(Z[S], R+).

Applying this over a covering of X by perfectoid affinoids U = Spa(R,R+) in Xproét, we obtain
an isomorphism in D(Cond(Ab)):

RΓ((X × S)proét, Ô
+
cond) ∼= RHom(Z[S], RΓ(X, Ô+

cond)). (3.6.2)

Let G be a profinite group. A pro-étale G-torsor over X is an object Y → X admitting an
action G× Y → Y lying over the trivial action of X, such that the map G× Y → Y ×X Y given
by (g, y) 7→ (y, gy) is an isomorphism.

Proposition 3.6.3. Let X be a rigid-analytic space, and let Y → X be a perfectoid pro-étale
G-torsor. There is an isomorphism in D(Solid):

RΓ(Xproét, Ô
+
cond) ∼= RΓ(Yproét, Ô

+
cond)hG.

Proof. Since Y → X is pro-étale, the pro-étale cohomology of X can be computed by means of
the simplicial cover:

· · · →→→ Y ×X Y ⇒ Y

Namely, RΓ(Xproét, Ô
+
cond) is quasi-isomorphic to the totalization of the corresponding simplicial

object
RΓ(Y, Ô+

cond)→ RΓ(Y ×X Y, Ô+
cond) ⇒ · · · .

Since Y → X is a G-torsor, the nth term in the complex is quasi-isomorphic to

RΓ((Gn × Y )proét, Ô
+
cond) ∼= RHom(Z[Gn], RΓ(Yproét, Ô

+
cond))

by (3.6.2). Lemma 3.3.2(1) identifies the latter as the nth term in a cosimplicial resolution whose
totalization computes RΓ(Yproét, Ô

+
cond)hG. �

Example 3.6.4. Let K be a nonarchimedean field of characteristic (0, p). Let K be an algebraic
closure, and let C be the metric completion of K. Then Spa(C,OC)→ Spa(K,OK) is a pro-étale
torsor for the group Gal(K/K). Furthermore, since C is algebraically closed, every pro-étale
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cover of Spa(C,OC) is split, meaning that Hi(Spa(C,OC)proét, Ô
+) = 0 for i > 0. Therefore by

Proposition 3.6.3 we have an isomorphism in D(Solid):

RΓ(Spa(K,OK)proét, Ô
+
cond) ∼= O

hGal(K/K)
C .

3.7. RΓ(Xproét, Ô
+
cond) for affinoid X. The pro-étale cohomology RΓ(Xproét, Ô

+) of a rigid-
analytic space X is a complex of abelian groups. Whereas in applications like our Theorem 3.9.3,
it will be necessary to control RΓ(Xproét, Ô

+
cond) as a complex of condensed abelian groups. The

main theorem of this subsection is that, when X is affinoid, RΓ(Xproét, Ô
+
cond) is p-adic in the

sense of Definition 3.4.7, and indeed is the p-adic completion of RΓ(Xproét, Ô
+) in the sense

of Lemma 3.4.8. This will allow us to prove condensed enhancements of comparison theorems
relating to RΓ(Xproét, Ô

+).
Recall the p-adic completion functor A 7→ (Γ∗A)∧p from D(Ab) to D(Solid), whose image

consists of the p-adic solid complexes.

Lemma 3.7.1. Let X be an affinoid rigid-analytic space over a nonarchimedean field of char-
acteristic (0, p). There is a natural isomorphism in D(Solid):

RΓ(Xproét, Ô
+
cond) ∼= (Γ∗RΓ(Xproét, Ô

+))∧p

To prove the lemma, we need the notion of a strictly totally disconnected perfectoid space Y
[Sch22, Definition 1.14]: this means that Y is quasi-compact, and every étale cover of Y has a
section.

Lemma 3.7.2. Let Y be a strictly totally disconnected perfectoid space. Then Hi(Yproét, Ô
+) = 0

for all i > 0.

Proof. First we claim that the global sections functor F 7→ F(Y ) on sheaves of abelian groups
on Yét is exact. Indeed, if f : F → G is surjective, and s ∈ G(Y ), there exists an étale cover
c : Y ′ → Y and t ∈ F(Y ′) such that f(t) = c∗(s). Since Y is strictly totally disconnected, there
exists a section σ to c, i.e., cσ = idY . Then s = id∗Y (s) = σ∗c∗(s) = σ∗f(t) = fσ∗(t) lies in the
image of F(Y ) under f . As a result, Hi(Yét,F) = 0 for all i > 0.

Let ν : Yproét → Yét be the projection. For a complex A of sheaves of abelian groups on Yét,
the unit of the adjunction A 7→ Rν∗ν

∗A is a quasi-isomorphism. A proof of this fact is found in
[BS15, Corollary 5.1.6] (in the context of schemes, but the formalism is the same).

We apply the above observations to the sheaf F = O+/pn on Yét, for each n ≥ 1. The pullback
of this sheaf to Yproét, evaluated on a perfectoid affinoid U = lim←−Ui, is

ν∗O+/pn(U) = lim−→(O+/pn)(Ui) = (Ô+/pn)(U),

which is to say that ν∗O+/pn ∼= Ô+/pn as sheaves on Yproét. Therefore

RΓ(Yproét, Ô
+/pn) ∼= RΓ(Yét, Rν∗ν

∗O+/pn) ∼= RΓ(Yét,O
+/pn) ∼= (O+/pn)(Y )

has vanishing cohomology in degree > 0. Taking the limit in n shows that RΓ(Yproét, Ô
+) ∼=

O+(Y ) has no higher cohomology either. �

Lemma 3.7.3. Let X be an affinoid rigid-analytic space over a nonarchimedean field of char-
acteristic (0, p). There exists a pro-étale cover of X by an affinoid perfectoid space X̃ which is
strictly totally disconnected.

Proof. There exists a pro-étale cover X ′ → X which is affinoid perfectoid by [Sch13a, Proposition
4.8], and then there exists a pro-étale cover X̃ → X ′ with X̃ strictly totally disconnected by
[Sch22, Lemma 7.18]. �
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Lemma 3.7.4. Let Y be a strictly totally disconnected perfectoid space, and let Y ′ → Y be a
pro-étale cover, with Y ′ perfectoid affinoid. Then Y ′ is also strictly totally disconnected.

Proof. Since Y ′ is affinoid, Y ′ → Y is quasicompact and separated, in which case [Sch22, Lemma
7.19] applies to conclude that Y ′ is strictly totally disconnected. �

We can now give the proof of Lemma 3.7.1. By Lemma 3.7.3, there exists a pro-étale cover
X̃ → X with X̃ strictly totally disconnected. For i ≥ 1, let X̃(i) be the i-fold fiber product of
X̃ over X. Any of the projections X̃(i) → X̃, being a composite of base changes of pro-étale
morphisms, is itself pro-étale. By Lemma 3.7.4, each X̃(i) is strictly totally disconnected and
hence affinoid. By Lemma 3.7.2, Hj(X̃

(i)
proét, Ô

+
cond) = 0 for all j > 0. Therefore RΓ(Xproét, Ô

+
cond)

is computed by the Čech complex associated to the simplicial complex associated to the pro-étale
cover X̃ → X. Explicitly, RΓ(Xproét, Ô

+
cond) is quasi-isomorphic to the complex of condensed

abelian groups with terms Ô+
cond(X̃(i)). By our definition of Ô+

cond:

Ô+
cond(X̃(i)) = Ô+(X̃(i)) ∼= Ô+(X̃(i))∧p ,

where the isomorphism holds because Ô+(X̃(i)) carries the p-adic topology (which is in turn
true because X̃(i) is affinoid perfectoid). Since the complex with terms Ô+(X̃(i)) computes
RΓ(Xproét, Ô

+) (again by Lemma 3.7.2), we find that the p-adic completion of RΓ(Xproét, Ô
+)

is quasi-isomorphic to RΓ(Xproét, Ô
+
cond).

3.8. Continuous cohomology of p-adic Lie groups. As Theorem B is a statement about the
continuous cohomology of the Morava stabilizer group Gn ∼= O×D o Ẑ, it will be useful to collect
some basic results on the continuous cohomology of p-adic Lie groups such as O×D.

The first systematic study of the continuous cohomology of p-adic Lie groups was undertaken
by Lazard [Laz65]. Lazard’s results include comparision theorems such as [Laz65, Théorème
V.2.4.10], which we briefly summarize. If G is a Qp-analytic group admitting a p-valuation,
Lazard defines its Lie algebra LieG over Qp. Then if V is a finite-dimensional Qp-vector
space admitting a continuous action of G, then LieG acts on V , and we have an isomorphism
H∗cts(G,V ) ∼= H∗(LieG,V ). (If G is an algebraic group over Qp, then any sufficiently small
subgroup of G(Qp) satisfies Lazard’s hypotheses, with LieG being the usual Lie algebra of G.)

The following is a well-known consequence of Lazard’s theorem, see for example [Mor85,
Remark 2.2.5].

Lemma 3.8.1. Let G be either of the groups GLn(Zp) or O×D. Consider the trivial action of G
on Qp. There is an isomorphism of graded Qp-algebras:

H∗cts(G,Qp) ∼= ΛQp(x1, x3, . . . , x2n−1).

In the case of G = O×D, the outer automorphism ad Π (where Π is a uniformizer of D×) acts as
the identity on H∗cts(G,Qp).

Proof. By Lazard’s result, H∗cts(G,Qp) ∼= H∗(LieG,Qp), so we are reduced to calculating Lie
algebra cohomology. In the case of G = O×D, the outer automorphism ad Π on G corresponds to
an inner automorphism of LieG, which acts trivially on H∗(LieG,Qp).

The Lie algebra cohomology of a reductive Lie algebra g over a field k of characteristic zero
is well-studied [CE48], [Kos50]; we give a brief exposition. If k = R and g is the Lie algebra of
a compact Lie group G, then H∗(g,R) is isomorphic to the de Rham cohomology ring H∗dR(G).
Generally, this is a graded-commutative R-algebra whose primitive elements live in odd degree.
In the special case G = U(n), the sequence of fibrations U(n − 1) → U(n) → S2n−1 allows one
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to identify the rational cohomology H∗dR(U(n)) with the rational cohomology of a product of
spheres S1 × S3 × · · · × S2n−1. Thereby we obtain an isomorphism

H∗(gln(Q),Q) ∼= ΛQ(x1, x3, . . . , x2n−1), (3.8.2)

since the two sides become isomorphic after tensoring with C. (See [Kos50] for an explicit descrip-
tion, due to Dynkin, of the elements x1, x3, . . . , x2n−1 in terms of cocycles.) The isomorphism
(3.8.2) implies the lemma for G = GLn(Zp), since LieG = gln(Qp).

Now suppose G = O×D. Then LieG = D is a twist of gln(Qp) in the sense that there is an
isomorphism:

LieG⊗Qp
∼−→ gln(Qp). (3.8.3)

This implies that H∗(LieG,Qp) is an exterior algebra as claimed, since it is one after tensoring
with Qp. �

Lemma 3.8.4. Let W = W (Fp) and K = W [1/p].
(1) The continuous cohomology Hi

cts(Gal(Fp/Fp),W ) is Zp if i = 0, and is 0 otherwise.
(2) Let Gn act on K through its quotient Gal(Fp/Fp). There is an isomorphism of graded

Qp-algebras:
H∗cts(Gn,K) ∼= ΛQp

(x1, x3, . . . , x2n−1)

Proof. (1) Since Gal(Fp/Fp) ∼= Ẑ, it is enough to show vanishing of cohomology in degree 1. Since
W is p-adically complete, this is further reduced to showing that H1

cts(Gal(Fp/Fp),Fp) = 0; this
is true because x 7→ xp − x is surjective on Fp.

(2) Consider the Hochschild–Serre spectral sequence:

Hi
cts(Gal(Fp/Fp), Hj

cts(O
×
D,K)) =⇒ Hi+j

cts (Gn,K).

Consider the action of Gal(Fp/Fp) onHj
cts(O

×
D,K) = Hj

cts(O
×
D,Qp)⊗Zp

W . The action on the first
factor is trivial by Lemma 3.8.1, and the action on the second factor has no higher cohomology
by (1). Therefore:

H∗cts(Gn,K) ∼= H∗cts(O
×
D,Qp),

at which point we apply Lemma 3.8.1. �

3.9. Overview of the proof of Theorem B. Let p be a prime number, and let Γ be a formal
group of dimension 1 and height n over Fp. Let LT be the functor of deformations of Γ. Then
LT is representable by a formal scheme Spf A whose coordinate ring is isomorphic to a power
series ring over W = W (Fp):

A ∼= W Ju1, . . . , un−1K.
Let OD = End Γ; then OD is the ring of integers in a division algebra D over Qp of invariant

1/n. Explicitly, OD is generated over W (Fpn) by an element Π satisfying Πn = p and Πα =
σ(α)Π, where σ ∈ AutW (Fpn) is the Frobenius automorphism. The Morava stabilizer group Gn
from Section 2 is the profinite completion of D×; it fits into an exact sequence:

1→ O×D → Gn → Gal(Fp/Fp)→ 1.

There is a continuous action of Gn on A.
Our main theorem (Theorem B) concerns the continuous cohomology ring H∗cts(Gn, A). The

action of Gn on A is rather inexplicit, and it seems difficult to compute H∗cts(Gn, A) directly
in terms of cocycles. To address this problem, we pass from the formal scheme LT to its rigid-
analytic generic fiber LTK , which is isomorphic to the open unit ball over K. The use of LTK has
a precedent in chromatic homotopy theory, namely in applications of the Gross–Hopkins period
morphism [HG94]:

π : LTK → P(M(Γ)).



ON THE RATIONALIZATION OF THE K(n)-LOCAL SPHERE 27

Here M(Γ) ∼= Kn is the rational Dieudonné module of Γ, and P(M(Γ)) ∼= Pn−1
K is the cor-

responding projective space, considered as a rigid-analytic space over K. The morphism π is
étale, surjective, equivariant for the action of O×D, and fairly explicit in terms of the variables
u1, . . . , un−1. Using the period morphism π, it is possible in principle to give formulas for the
action of O×D on A, see [DH95].

For our work we will not use the period morphism but rather a different structure possessed
by LTK : the isomorphism between the two towers. This was discovered by Faltings [Fal02b], see
also [FGL08] for more details. We review the form given in [SW13, Theorem D], which treats
this phenomenon as an isomorphism between perfectoid spaces.

Let H be Drinfeld’s symmetric space (also called Drinfeld’s upper half-space) in dimension
n− 1. This is a rigid-analytic space over Qp, defined as

H = Pn−1
Qp
\
⋃
H

H

where Pn−1
Qp

is rigid-analytic projective space, and H runs over all Qp-rational hyperplanes in
Pn−1
Qp

. ThenH admits an action of the group GLn(Qp) and in particular of its subgroup GLn(Zp).

Theorem 3.9.1. There exists a perfectoid space X and a diagram of adic spaces:

X
GLn(Zp)

}}

Gn

��

LTK H

Here, X admits commuting actions of Gn and GLn(Zp). The morphism to LTK is a pro-étale
GLn(Zp)-torsor, which is equivariant for the action of Gn. The morphism to H is a pro-étale
Gn-torsor, which is equivariant for the action of GLn(Zp).

Proof. This is an application of a general duality statement [SW13, Theorem E] between Rapoport-
Zink spaces at infinite level. Both LTK and the base change HK arise as the generic fiber of
a deformation problem of formal groups. We have already seen that Lubin–Tate space LT
parametrizes deformations of a formal group Γ over Fp of dimension 1 and height n. Whereas,
HK is the generic fiber of a formal scheme HW over Spf W which parametrizes deformations of
a special formal OD-module X in the sense of [Dri76]. The relation between X and Γ is:

X = Γ⊕ Γ(p) ⊕ · · · ⊕ Γ(pn−1),

where Γ(pk) is the pullback of Γ under the pkth power Frobenius automorphism of Fp.
Trivialization of the torsion in the universal deformation of Γ (resp., X) produces a pro-étale

torsor over LTK (resp., HK) with group GLn(Zp) (resp., O×D), known as the Lubin–Tate tower
(resp., the Drinfeld tower). Applied to this situation, [SW13, Theorem E] is the statement that
the two towers are isomorphic in the limit to the same perfectoid space X.

Note that HK → H, being a pullback of SpaK → SpaQp, is a pro-étale Gal(Fp/Fp)-torsor.
It remains to be seen why the composition X → HK → H is a pro-étale torsor for the group
Gn. For this, we observe that there is an OD-equivariant isomorphism Γ

∼−→ Γ(pn) (for instance,
the pnth power isogeny divided by p). From this one constructs an isomorphism i : X

∼−→ X(p)

which satisfies the relation i ◦ α = (ΠαΠ−1) ◦ i for all α ∈ O×D. The isomorphism i induces an
automorphism of X lying over the Frobenius automorphism of SpaK and satisfying the same
relation with respect to O×D. This automorphism is exactly the necessary structure required to
extend the action of O×D on X to an action of Gn. �
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Theorem 3.9.1 suggests a strategy for accessing the cohomology ringH∗cts(Gn, A). The diagram
in Theorem 3.9.1 witnesses an isomorphism in D(Solid):

RΓ(LTK,proét, Ô
+
cond)hGn

∼−→ RΓ(HK,proét, Ô
+
cond)hGLn(Zp) (3.9.2)

Indeed by Proposition 3.6.3, both objects are isomorphic to

RΓ(Xproét, Ô
+
cond)h(Gn×GLn(Zp)).

The isomorphism in (3.9.2) is helpful because it translates the opaque action of O×D on LTK into
the transparent action of GLn(Zp) on H. To completely leverage (3.9.2), we will have to say
something about the Ô+

cond-cohomology of Xproét, where X is LTK or H, respectively. Let us
write Xan for the analytic topology, to distinguish it from the pro-étale topology. The following
comparison statements appear as Theorem 6.2.4 and Theorem 6.3.6.

Theorem 3.9.3. The pro-étale cohomology of Ô+
cond on LTK and H can be approximated as

follows.
(1) There is a morphism of differential graded solid W -algebras, which is equivariant for the

action of Gn:
A[ε]→ RΓ(LTK,proét, Ô

+
cond).

(2) There is a morphism of differential graded solid Zp-algebras, which is equivariant for the
action of GLn(Zp):

Zp[ε]→ RΓ(Hproét, Ô
+
cond).

Here R[ε] is shorthand for the complex R 0→ R in degrees 0,1. Let C be the cofiber of either of
the above morphisms in D(Solid). Then Hi(C) = 0 for i ≤ 0, and there exists a single power of
p which annihilates Hi(C) for every i ≥ 1.

The proof of Theorem 3.9.3 requires the full force of the integral p-adic Hodge theory theorems
of [BMS18] and [vK19]. We apply these theorems in Section 5. The effect is to reduce the study
of RΓ(Xproét, Ô

+
cond) (where X is either of LTK or H) to the case of a point X = Spa(K,OK).

By Example 3.6.4, the pro-étale cohomology of Spa(K,OK) agrees with the Galois cohomology
O
hGal(K/K)
C , where C is the completion of an algebraic closure of K. This cohomology was

controlled by Tate [Tat67], in a way that is valid for any local field of characteristic (0, p).
Expressed in our language, Tate’s result is that there is a morphism of differential graded solid
OK-algebras

W [ε]→ O
hGal(K/K)
C

whose cofiber has pN -torsion cohomology groups, for some absolute constant N ; this will be
explained in more detail in the next section.

Combining (3.9.2) with Theorem 3.9.3, we obtain a diagram in D(Solid):

AhGn ⊗Zp
Zp[ε] ∼= A[ε]hGn

→ RΓ(LTK,proét, Ô
+
cond)hGn

∼= RΓ(Hproét, Ô
+
cond)hGLn(Zp)

← Zp[ε]hGLn(Zp)

∼= ZhGLn(Zp)
p ⊗Zp

Zp[ε]

Here, each of the two arrows not labeled as an isomorphism has cofiber whose cohomology groups
are annihilated by some uniform power of p.
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We will briefly indicate how this is used to prove Theorem B, leaving the details for Section 6.
By Proposition 2.5.1, we have a Gn-equivariant splitting A = W ⊕ Ac. After inverting p in the
above diagram, we arrive at an isomorphism in cohomology:(

H∗cts(Gn,K)⊕H∗cts(Gn, Ac)⊗Zp
Qp
)
⊗Qp[ε] ∼= H∗cts(GLn(Zp),Qp)⊗Qp

Qp[ε] (3.9.4)

By Lemmas 3.8.1 and 3.8.4, H∗cts(Gn,K) and H∗cts(GLn(Zp),Qp) are isomorphic to the same
exterior Qp-algebra. In particular dimQp

Hi
cts(Gn,K) = dimQp

Hi
cts(GLn(Zp),Qp) for all i.

Comparing dimensions of the Qp-vector spaces in (3.9.4) shows that H∗cts(Gn, Ac)⊗Zp
Qp = 0,

which is to say that H∗cts(Gn, Ac) is torsion: this is the assertion of Theorem B.

4. The Galois cohomology of OC

Let us fix some definitions. A nonarchimedean field is a field K which is complete with
respect to the topology induced from a nontrivial nonarchimedean valuation | | : K → R≥0.
(Some authors do not require K to be complete, but for our purposes it will be useful to always
assume this.) Let OK be its valuation ring; i.e., the subring of elements with |α| ≤ 1. Let κ
be the residue field of OK . The characteristic of a nonarchimedean field K refers to the pair
(charK, charκ).

A local field is a nonarchimedean field satisfying the additional conditions: (a) the valuation
on K is discrete, in other words OK is a discrete valuation ring, and (b) the residue field κ is
perfect. (Some authors require that the residue field of a local field be finite, which is identical
to K being locally compact. However, we want to allow for fields such as W (Fp)[1/p].)

Let L be a (possibly infinite) Galois extension of a nonarchimedean field K. The valuation on
K extends uniquely to a valuation on L, and the completion L̂ is a nonarchimedean field admitting
a continuous action of Gal(L/K). (If L/K is finite then it is not necessary to complete.) It is
an interesting problem to compute the continuous cohomology groups Hi

cts(Gal(L/K),OL̂), or
at least to approximate these as OK-modules. For simplicity we will assume throughout that
charK = 0.

A basic result along these lines is due to Ax, which settles the problem in degree i = 0.

Theorem 4.0.1 ([Ax70]). Let K be a nonarchimedean field with charK = 0. Let L/K be a
Galois extension of nonarchimedean fields. Then the subfield of L̂ fixed by Gal(L/K) is exactly
K. Consequently H0(Gal(L/K),OL̂) = OK .

Results on higher cohomology tend to require that K be a local field. A classical result [Frö83,
Theorem 3] attributed to Noether states that if L/K is a finite tamely ramified Galois extension
of local fields, then OL is a free OK [Gal(L/K)]-module, and therefore Hi(Gal(L/K),OL) = 0 for
i > 0. For arbitrary finite extensions there is the following result of Sen:

Theorem 4.0.2 ([Sen69]). Let K be a local field of characteristic (0, p). Let L/K be a finite
Galois extension. Then H1(Gal(L/K),OL) is α-torsion for any α ∈ OK with |α| ≤ |p|1/(p−1).

Sen’s theorem does not imply that H1
cts(Gal(L/K),OL̂) is torsion for L/K infinite. Indeed

this H1
cts is not torsion when L = K, as the following classical result of Tate shows.

Theorem 4.0.3 ([Tat67]). Let K be a local field of characteristic (0, p), and let C be the com-
pletion of an algebraic closure K/K. Let ΓK = Gal(K/K). Then:

(1) Hi
cts(ΓK , C) ∼= K for i = 0, 1,

(2) Hi
cts(ΓK , C) = 0 for i ≥ 2.

For j ∈ Z, let C(j) be the jth Tate twist: this is C as a topological group, but the ΓK-action
has been twisted by the jth power of the cyclotomic character. For j 6= 0 and all i ≥ 0 we have
Hi

cts(ΓK , C(j)) = 0.
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Our contribution to this story is the following refinement of Tate’s theorem, which controls
torsion in the cohomology of OC . We call a local field K of characteristic (0, p) tame if p does
not divide its absolute ramification index eK (defined in the following subsection).

Theorem 4.0.4. Let K be a local field of characteristic (0, p). Let C be the completion of an
algebraic closure K/K. Let ΓK = Gal(K/K). Then:

(1) H0(ΓK ,OC) = OK .
(2) There is an isomorphism H1

cts(ΓK ,OC) ∼= OK ⊕ T , where T is p4-torsion (resp., p6-
torsion) as p is odd or even, respectively. If K is tame, or if it is a cyclotomic extension
of a tame field, this bound can be improved to p3 (resp., p5).

(3) For i > 1, Hi
cts(ΓK ,OC) is p-torsion (resp., p2-torsion) as p is odd or even, respectively.

Theorem 4.0.4 appears later in this section as Theorem 4.3.11.
We also obtain an explicit bound on the continuous cohomology of the nontrivial Tate twists

OC(j).

Theorem 4.0.5. With notation as in Theorem 4.0.4, let j 6= 0 be an integer, and let OC(j) be
the jth Tate twist of OC as a Gal(K/K)-module. Then:

(1) H0(ΓK ,OC(j)) = 0.
(2) H1

cts(ΓK ,OC(j)) is pM+v(j)-torsion. Here v(j) is the p-adic valuation of j, andM = MK

is a constant which only depends on K and which is insensitive to passage to a tamely
ramified extension of K. If p - eK we may take M = 2 if p is odd and M = 5 if p = 2.

(3) For i ≥ 2, Hi
cts(ΓK ,OC(j)) is p-torsion if p is odd and p3-torsion if p = 2.

The theorem appears later as Theorem 4.4.3.

4.1. Ramification theory for extensions of local fields. All material in this subsection is
taken from Serre’s book [Ser79], to which we refer the reader for more details.

Suppose K is a local field of characteristic (0, p). We fix here some notation regarding valua-
tions. The ring of integers OK is a discrete valuation ring with maximal ideal πKOK , where πK
is a uniformizing parameter for K. Any element α ∈ K× can be written as α = π

vK(α)
K u, where

u is a unit in OK . The map
vK : K× → Z

is then a surjective homomorphism not depending on the choice of π; this is the relative valuation
map. For any real number 0 < a < 1, the absolute value |α| = avK(α) defines the topology on K.
Note that p ∈ K× (sinceK has characteristic 0) and vK(p) > 0 (since the residue field OK/πKOK
has characteristic p); relatedly, K contains Qp as a subfield. The number eK = vK(p) is the
absolute ramification index of K. We define the absolute valuation map

v : K× → Q
by v(α) = vK(α)/eK , so that v(p) = 1; thus v extends the valuation vQp

on Qp.
If L/K is a field extension of finite degree, let OL be the integral closure of OK in L. Then

OL is also a complete discrete valuation ring [Ser79, Chapter 2, §2, Proposition 3], so that L
is a local field of characteristic (0, p). The number eL/K = vL(πK) is the relative ramification
index of L/K; the extension L/K is totally ramified if eL/K = [L : K], ramified if eL/K > 1 and
unramified if eL/K = 1. Note that for α ∈ K× we have vL(α) = eL/KvK(α). Applied to α = p,
this last relation gives eL/K = eL/eK . Thus for α ∈ K× we have vK(α)/eK = vL(α)/eL. As a
result, the absolute valuation map v defined above extends unambiguously to L×. Indeed, if K
is an algebraic closure of K, we continue to write v : K

× → Q for the absolute valuation map.
Besides the ramification index eL/K , there are two other quantities which measure ramification

in the extension L/K: the discriminant dL/K and the different DL/K . To define these, we need
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the trace map trL/K : L → K. The discriminant dL/K is the ideal of OK generated by the
determinant of the matrix (trL/K(eiej)), where ei runs through a basis for OL as an OK-module.
The different DL/K is the ideal of OL whose inverse is the dual of OL under the trace pairing
L × L → K defined by (x, y) 7→ trL/K(xy). The discriminant and different are related by
NL/K(DL/K) = dL/K , where NL/K is the norm map [Ser79, Chapter 3, §3, Proposition 6]. An
extension L/K is unramified if and only if DL/K = OL [Ser79, Chapter 3, §5, Theorem 1], which
in turn is true if and only if dL/K = OK .

Now suppose L/K is a finite Galois extension. The Galois group Gal(L/K) admits an ex-
haustive decreasing filtration Gal(L/K)u by real numbers u ≥ −1, defined by

Gal(L/K)u =

{
σ ∈ Gal(L/K)

∣∣∣∣ vL(σ(α)− α) ≥ u+ 1 for all α ∈ OL

}
.

Since vL takes integer values, we have Gal(L/K)u = Gal(L/K)due, where due is the ceiling
function of u.

This filtration of Gal(L/K) is known as the lower numbering filtration. The first three sub-
groups appearing in this filtration are:

Gal(L/K)−1 = Gal(L/K),

Gal(L/K)0 = the inertia group of L/K,
Gal(L/K)1 = the maximal p-subgroup of Gal(L/K)0,

see [Ser79, Chapter IV, §2, Corollary 1 and Corollary 3]. The cardinality of the inertia group
Gal(L/K)0 equals the relative ramification index eL/K . The extension L/K is tame if p - eL/K ;
this condition is equivalent to Gal(L/K)1 = 1. Otherwise, L/K is wild.

The lower numbering filtration of Gal(L/K) recovers the differentDL/K by the relation [Ser79,
Chapter IV, §1, Proposition 4]:

vL(DL/K) =

∞∑
i=0

(# Gal(L/K)i − 1) (4.1.1)

The lower number filtration is adapted to subgroups of Gal(L/K), in the sense that if K ′/K
is a subextension of L/K, then Gal(L/K ′)u = Gal(L/K)u ∩ Gal(L/K ′). There is an alter-
native descending filtration Gal(L/K)u by real numbers u ≥ −1, the upper numbering filtra-
tion. This filtration is adapted to quotients of Gal(L/K), in the sense that if K ′/K is a Galois
subextension of L/K, then Gal(K ′/K)u is the image of Gal(L/K)u under the quotient map
Gal(L/K) → Gal(K ′/K). To define the upper numbering filtration, one needs the Herbrand
function ϕL/K : [−1,∞) → [−1,∞), a continuous, increasing, and bijective function defined by
the rules:

ϕL/K(u) =

{
u, −1 ≤ u ≤ 0,∫ u

0
[Gal(L/K)0 : Gal(L/K)t]

−1dt, u > 0.

The inverse function to ϕL/K is denoted ψL/K . The upper numbering filtration on Gal(L/K) is
now defined by:

Gal(L/K)u = Gal(L/K)ψL/K(u)

for all u ≥ −1. Note that Gal(L/K)0 = Gal(L/K)0 is the inertia group of L/K.
In terms of the upper numbering filtration, the formula for the different in (4.1.1) becomes:

vL(DL/K) = eL/K

∫ ∞
−1

(
1− 1

# Gal(L/K)u

)
du (4.1.2)

The property claimed above about the upper numbering filtration being adapted to quotients
is [Ser79, Chapter IV, §3, Proposition 14]. This property allows for the definition of Gal(L/K)u
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when L/K is an infinite Galois extension. Indeed, the Gal(Li/K)u form a projective system as
Li ranges over Galois subextensions of L/K, and one defines Gal(L/K)u = lim←−Gal(Li/K)u, a
closed subgroup of Gal(L/K).

Suppose L/K is a possibly infinite Galois extension. A real number u is a jump for L/K if
Gal(L/K)u+ε ( Gal(L/K)u for every ε > 0. The Hasse–Arf theorem states that if Gal(L/K) is
abelian, the jumps for L/K are all integers. For a proof, see [Ser79, Chapter V, §7].

Finally we recall some of the main theorems of local class field theory, which furnishes a
description of the abelianization Gal(K/K)ab. Assume first that the residue field of K is finite.
For an integer i ≥ 0, let U iK equal O×K if i = 0, and 1 + πiKOK if i > 0. The U iK are profinite
topological groups.

Theorem 4.1.3. Let Kab/K be the maximal abelian extension, so that Gal(K/K)ab ∼= Gal(Kab/K).
Let K̂× be the profinite completion of the group K×, so that K̂× = πẐ

K × O×K . There exists an
isomorphism (the reciprocity map)

recK : K̂× → Gal(Kab/K)

which carries U iK onto Gal(Kab/K)i for all integers i ≥ 0.
For a finite extension L/K, the inclusion Kab ⊂ Lab induces a homomorphism Gal(Lab/L)→

Gal(Kab/K). The following diagram commutes:

L×
recL //

NL/K

��

Gal(Lab/L)

��

K×
recK

// Gal(Kab/K)

For a proof, see [Ser67].
For an abelian group A written multiplicatively, write A(p) for the image of x 7→ xp on A.

Corollary 4.1.4. Let L/K be a (possibly infinite) abelian extension. For u > eK/(p − 1), we
have (Gal(L/K)u)(p) = Gal(L/K)u+eK .

Proof. By the Hasse–Arf theorem, the jumps of L/K are integers, and we are reduced to the case
that u = i is an integer. By Theorem 4.1.3, specifically the equality recK(U iK) = Gal(Kab/K)i, it
is enough to prove the relation (U iK)(p) = U i+eKK whenever i > eK/(p−1). For (U iK)(p) ⊂ U i+eKK :
Suppose α ∈ OK . Expanding (1 + πiKα)p gives 1 + πipKα

p plus terms divisible by pπiK . We have
vK(pπiK) = i+ eK , and vK(πipK) = ip > i+ eK by hypothesis.

For U i+eKK ⊂ (U iK)(p): Again suppose α ∈ OK . We claim that the binomial expansion of
(1 + pπiKα)1/p converges to an element of U iK . For n ≥ 1, the nth term in the expansion is

pn
(

1/p
n

)
πniKα

n, which equals an element of OK times πniK /n!. Using the inequality v(n!) ≤

(n− 1)/(p− 1) (a standard inequality), we have:

vK

(
πniK
n!

)
− i = ni− eKv(n!)− i ≥ (n− 1)(i− ek

p− 1
).

This shows that the terms of the expansion of (1 + pπiKα)1/p beyond the initial 1 lie in πiOK
and converge to 0. �

We remark that Corollary 4.1.4 holds even when the residue field of K is infinite. One reduces
to the case that the residue field is algebraically closed (since the higher ramification groups
are insensitive to unramified base change). In that case Serre [Ser61] proves an analogue of
Theorem 4.1.3 in which the U iK are replaced by pro-algebraic groups UiK . It is still true that
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the pth power map carries UiK surjectively onto Ui+eKK for i sufficiently large, which is all that is
necessary for Corollary 4.1.4.

Some of the results in this section pertain to the stability of some property under base change
by a tame extension L/K. We list some properties of tame extensions in the following proposition.

Proposition 4.1.5. Suppose L/K is a finite Galois extension which is tame (that is, p - eL/K).
Let e = eL/K .

(1) For u ≥ 0 we have ϕL/K(u) = u/e and ψL/K(u) = eu.
(2) For u > 0 we have NL/K(UeuL ) = UuK .
(3) LetM/K be a (possibly infinite) abelian extension. For u > 0, the image of Gal(LM/L)eu

under Gal(LM/L)→ Gal(M/K) is Gal(M/K)u.

Proof. Part (1) follows from the definition of ϕL/K , using the facts that # Gal(L/K)0 = e and
Gal(L/K)u is trivial for all u > 0.

For part (2): The claim is transitive in the sense that if it is true for L/K and M/L, then it is
true for M/K. Using the fact that inertia groups of local fields are solvable [Ser79, Chapter IV,
§2, Corollary 5], we can reduce to the case that L/K is either unramified or totally ramified and
cyclic of prime degree ` 6= p. The proof of the claim in those cases is found in [Ser79, Chapter
V, §2, Proposition 1] and [Ser79, Chapter V, §3, Corollary 4], respectively.

Part (3) is proved by combining compatibility of recK with the norm map (Theorem 4.1.3)
with part (2). �

4.2. Ramified Zp-extensions. Keep the assumption that K is a local field of characteristic
(0, p).

Let K∞/K be a Galois extension with Gal(K∞/K) ∼= Zp. We assume that K∞/K is ramified,
in the sense that the inertia group Gal(K∞/K)0 is nontrivial. The inertia group is always
closed, so this condition is equivalent to Gal(K∞/K)0 being of finite index in Gal(K∞/K), or
equivalently, that K∞ contains elements of arbitrarily small positive valuation.

Such an extension always exists. For instance, let L/K be the extension obtained by adjoining
a primitive pnth root of unity ζpn for all n ≥ 1. Since v(ζpn − 1) = 1/pn gets arbitrarily small,
L/K is ramified. Its Galois group is an open subgroup of Z×p , and so admits a maximal quotient
isomorphic to Zp. The extensionK∞/K corresponding to this quotient is a ramified Zp-extension
of K, which we call the cyclotomic Zp-extension.

The Galois group Gal(K∞/K) ∼= Zp has an obvious filtration by subgroups pnZp for n =
0, 1, . . . . We write Kn/K for the finite extension corresponding to the subgroup pnZp ⊆ Zp.

On the other hand we have the upper numbering ramification filtration Gal(K∞/K)u for
real numbers u ≥ −1. By the Hasse–Arf theorem, the jumps of this filtration occur at rational
integers. That is, there is a sequence of integers −1 = u0 ≤ u1 ≤ u2 ≤ . . . tending to ∞ such
that (as a subgroup of Gal(K∞/K) ∼= Zp):

Gal(K∞/K)u ∼= pnZp whenever un < u ≤ un+1

for all n = 0, 1, . . . . Let us call the sequence u0, u1, u2, . . . the jumps of K∞/K.
The two filtrations on Gal(K∞/K) are “eventually compatible” in the following sense.

Lemma 4.2.1. Let u0, u1, u2, . . . be the sequence of jumps for K∞/K defined above.
(1) There exists N such that uN ≥ 0 and un+1 = un + eK for all n ≥ N .
(2) If eK = 1 and K∞/K is the cyclotomic Zp-extension, then the sequence u0, u1, u2, . . . is
−1, 1, 2, 3, . . . .

(3) Suppose L/K is a finite Galois extension which is tame, and let e = eL/K . Then
L∞ = LK∞ is a ramified Zp-extension of L. The sequence of jumps for L∞/L is
−1, eu1, eu2, eu3, . . . .
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(4) Suppose eK = 1 and L/K is a finite Galois extension which is tame. If L∞/L is the
cyclotomic Zp-extension, then the sequence of jumps for L∞/L is −1, eL, 2eL, 3eL, . . . .

Proof. For part (1): Let N be large enough so that uN > eK/(p − 1). By Corollary 4.1.4, for
u ≥ uN we have (Gal(K∞/K)u)(p) = Gal(K∞/K)u+eK . Now suppose n ≥ N . If un < u ≤ un+1,
this relation means Gal(K∞/K)u+eK ∼= pn+1Zp. This means precisely that un+1 = un + eK .

For part (2): The computation of the higher ramification groups of the cyclotomic Zp-extension
over Qp (or any unramified extension thereof) is standard, see for instance [Ser79, Chapter IV,
§4].

For part (3): By Proposition 4.1.5, for all u > 0 the image of Gal(L∞/L)eu under Gal(L∞/L)→
Gal(K∞/K) is Gal(K∞/K)u, so that the jumps of L∞/L are exactly e times the jumps ofK∞/K.

For part (4): Combine parts (2) and (3). �

Lemma 4.2.2. Let K∞/K be a ramified Zp-extension with jumps u0, u1, u2, . . . . Then for each
n ≥ 1 large enough so that Kn/Kn−1 is ramified, the valuation of the different of Kn/Kn−1 is:

vKn
(DKn/Kn−1

) =
eKn/K

pn

n−1∑
k=0

(uk+1 − uk)(pk+1 − pk).

Proof. Applying the formula for the different (4.1.2) to Kn/K, we find:

vKn
(DKn/K) = eKn/K

n−1∑
k=0

(uk+1 − uk)

(
1− 1

pn−k

)
By the transitivity of the different [Ser79, Chapter III, §4, Proposition 8], we have DKn/K =

DKn/Kn−1
DKn−1/K . Applying vKn

(and using the relation vKn−1
= p−1vKn

, true by our as-
sumption that Kn/Kn−1 is ramified) gives the result. �

Lemma 4.2.3. Let K∞/K be a ramified Zp-extension. There exists an integer N ≥ 0 such that
for all n ≥ N + 1 we have:

vKn
(DKn/Kn−1

) ≥ p− 1 + eKn
(1− pN−n).

Proof. Take for N the integer appearing in Lemma 4.2.1(1), so that uN ≥ 0 (this means that
K∞/KN is totally ramified) and un = un−1 + eK for all n ≥ N + 1. For such an n, Kn/Kn−1 is
totally ramified, and so Lemma 4.2.2 applies:

vKn
(DKn/Kn−1

) =
eKn/K

pn

n−1∑
k=0

(uk+1 − uk)(pk+1 − pk)

=
eKn/K

pn

N−1∑
k=0

(uk+1 − uk)(pk+1 − pk) +
eKn/K

pn

n−1∑
k=N

eK(pk+1 − pk)

=
eKn/K

pn

N−1∑
k=0

(uk+1 − uk)(pk+1 − pk) + eKn
(1− pN−n)

Suppose that the inertia group Gal(K∞/K)0 ∼= prZp as a subgroup of Gal(K∞/K) ∼= Zp; this
means exactly that u0 = u1 = · · · = ur = −1 and ur+1 ≥ 0, and also that preKn/K = pn. Since
Kn/Kn−1 is ramified, we must have r < N . Therefore the first sum above is bounded below by
(eKn/K/p

n)(pr+1 − pr) = p− 1. �

In the context of Lemma 4.2.3, K∞/KN is a totally ramified Zp-extension. If it is relabeled so
that K = KN is the base of the extension, then each Kn/K is totally ramified, and the inequality
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in that lemma becomes

vKn
(DKn/Kn−1

) ≥ eK(pn − 1) + (p− 1). (4.2.4)

Definition 4.2.5. Let K∞/K be a ramified Zp-extension. We call K∞/K sufficiently ramified
if the inequality in (4.2.4) holds for each n ≥ 1.

In light of the above considerations and Lemma 4.2.1, there are plenty of examples of suffi-
ciently ramified Zp-extensions.

Lemma 4.2.6. Sufficiently ramified Zp-extensions exist in the following situations:
(1) Let K be a local field of characteristic (0, p) such that p - eK . Then K admits a sufficiently

ramified Zp-extension.
(2) Let K be as in part (1), and let L/K be a finite subextension of the cyclotomic Zp-

extension over L. Then L admits a sufficiently ramified Zp-extension.
(3) Let K be any local field of characteristic (0, p), and let K∞/K be a ramified Zp-extension.

Then for sufficiently large n, K∞/Kn is a sufficiently ramified Zp-extension.
(4) Let K∞/K be a sufficiently ramified Zp-extension, and let L/K be a finite Galois exten-

sion which is tame. Let L∞ = K∞L. Then L∞/L is a sufficiently ramified Zp-extension.

We need the following result on traces.

Lemma 4.2.7 ([Ser79, Chapter V Lemma 4]). Let L/K be a cyclic extension of order p. Then
for any α ∈ L we have:

vK(trL/K(α)) ≥
⌊
vL(α) + vL(DL/K)

p

⌋
,

where bxc is the floor function.

In the following lemma, |x| = av(x) for x ∈ K∞ and an arbitrary real number 0 < a < 1.
Then |x| is an absolute value inducing the topology on K∞.

Lemma 4.2.8. Assume K∞/K is sufficiently ramified. We have the following inequalities.
(1) For x ∈ Kn we have: ∣∣trKn/Kn−1

(x)
∣∣ ≤ |p|1−p−n

|x|

(2) For x ∈ Kn we have: ∣∣trKn/K(x)
∣∣ ≤ |p|n−(p−1)−1

|x|

Proof. For part (1): Let d = vKn
(DKn/Kn−1

). By definition of sufficiently ramified we have
d ≥ eK(pn − 1) + p− 1. Applying Lemma 4.2.7 to Kn+1/Kn, we find:

vKn−1(trKn/Kn−1
(x)) ≥

⌊
vKn(x) + d

p

⌋
≥ vKn

(x) + d− (p− 1)

p

= eKp
n−1 − eK

p
+
vKn

(x)

p
.

Translating this inequality in terms of the absolute valuation gives:

v(trKn/Kn−1
(x)) ≥ 1− 1

pn
+ v(x),

which (recalling that v(p) = 1) means exactly the inequality in part (1).
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For part (2), we apply part (1) inductively on x ∈ Kn to obtain:∣∣trKn/K(x)
∣∣ =

∣∣trK1/K trK2/K1
· · · trKn/Kn−1

(x)
∣∣

≤ |p|n−p
−1−p−2−···−p−n

|x|

≤ |p|n−(p−1)−1

|x|

�

Keep the assumption thatK∞/K is sufficiently ramified. Define the normalized trace t : K∞ →
K by t(x) = p−n trKn/K(x) whenever x ∈ Kn (note that this is unambiguous). For n ≥ 1 we
define tn : Kn → Kn−1 by tn(x) = p−1 trKn/Kn−1

(x). Then Lemma 4.2.8 translates into:

|t(x)| ≤ |p|−(p−1)−1

|x| , x ∈ K∞ (4.2.9)

and
|tn(x)| ≤ |p|−p

−n

|x| . (4.2.10)
Finally note that t(tn(x)) = t(x) for all x ∈ Kn.

Let σ be a topological generator of Gal(K∞/K) ∼= Zp. Elements of the polynomial ring K[σ]
act on K∞ in the evident manner. For x ∈ Kn we record the relation

tn(x) = p−1(1 + σp
n−1

+ σ2pn−1

+ · · ·+ σ(p−1)pn−1

)(x). (4.2.11)

Lemma 4.2.12. Assume that K∞/K is sufficiently ramified. For x ∈ K∞ we have:

|x− t(x)| ≤ |p|−1− 1
p(p−1) |σ(x)− x|

Proof. For each x ∈ Kn, (4.2.11) implies:

x− tn(x) = p−1

p−1∑
i=1

(1− σip
n−1

)(x)

= p−1

p−1∑
i=1

(1 + σp
n−1

+ · · ·+ σ(i−1)pn−1

)(1− σp
n−1

)(x).

Noting that |α(x)| ≤ |x| whenever α ∈ OK [σ], we find:

|x− tn(x)| ≤ |p|−1
∣∣∣(1− σpn−1

)x
∣∣∣ ≤ |p|−1 |σ(x)− x| . (4.2.13)

We will prove by induction on n ≥ 1 the following statement which implies the lemma: for
x ∈ Kn, we have

|x− t(x)| ≤ |p|−1− 1
p2−···− 1

pn |σ(x)− x| . (4.2.14)
(The exponent of |p| is meant to be −1 in the case n = 1.) The base case n = 1 is an instance
of (4.2.13). Now suppose n ≥ 2. Assume (4.2.14) for n− 1, and then for x ∈ Kn we have:

|x− t(x)| ≤ max {|x− tn(x)| , |tn(x)− t(x)|}

Treating each quantity on the right side in turn, we have

|x− tn(x)| ≤ |p|−1 |σ(x)− x|

by (4.2.13); this is ≤ the right side of (4.2.14). The other quantity is

|tn(x)− t(x)| = |tn(x)− t(tn(x))|

≤ |p|−1− 1
p2−···− 1

pn−1 |(σ − 1)tn(x)|
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by applying the inductive hypothesis to tn(x) ∈ Kn−1. Noting that σ commutes with tn, we
have

|(σ − 1)tn(x)| = |tn(σ − 1)(x)| ≤ |p|−p
−n

|σ(x)− x|
by (4.2.10) and so

|tn(x)− t(x)| ≤ |p|−1− 1
p2−···− 1

pn |σ(x)− x|
as required. �

The bounds in (4.2.9) and Lemma 4.2.12 show that t : K∞ → K is continuous and extends
uniquely to a K-linear map t : K̂∞ → K satisfying the same bounds for all x ∈ K̂∞:

|t(x)| ≤ |p|−
1

p−1 |x| (4.2.15)

|x− t(x)| ≤ |p|−1− 1
p(p−1) |σ(x)− x| (4.2.16)

We turn our attention now to the continuous cohomology Hi
cts(Gal(K∞/K),OK̂∞) when

K∞/K is a sufficiently ramified Zp-extension. Since Gal(K∞/K) ∼= Zp, the continuous cohomol-
ogy of Gal(K∞/K) acting continuously on a p-adically complete abelian group M is computed
by the complex

MhGal(K∞/K) : M
σ−1
// M ,

which is to say that H0
cts(M) = Mσ, H1

cts(M) = M/(σ−1)M , and Hi
cts(M) = 0 for i ≥ 2. In the

case ofM = OK̂∞ , the H
0 is OK by Ax’s theorem (Theorem 4.0.1), so we are left with describing

the H1.

Proposition 4.2.17. Let K∞/K be a ramified Zp-extension. Let N ≥ 0 be large enough so that
K∞/KN is sufficiently ramified. Define a p-adically complete abelian group X with continuous
Gal(K∞/K)-action by the exact sequence:

0→ OK → OK̂∞ → X → 0.

Then Hi
cts(Gal(K∞/K), X) = 0 for all i 6= 1, and H1

cts(Gal(K∞/K), X) is pN+2-torsion for
p 6= 2 and pN+3-torsion for p = 2.

Remark 4.2.18. Proposition 4.2.17 may be stated in terms of complexes this way: Let X =
XhGal(K∞/K), so that X sits in an exact triangle

O
hGal(K∞/K)
K → O

hGal(K∞/K)

K̂∞
→ X.

Then we have Hi(X) = 0 for i 6= 1, and H1(X) = H1
cts(Gal(K∞/K), X) is a torsion group

as claimed in the proposition. Note that since Gal(K∞/K) acts trivially on OK , a choice of
isomorphism Gal(K∞/K) ∼= Zp induces a quasi-isomorphism O

hGal(K∞/K)
K

∼= OK [ε].

Proof. Since Zp has cohomological dimension 1, it is enough to consider H0 and H1
cts.

We first consider the case N = 0, meaning that K∞/K is sufficiently ramified. Let σ be a
topological generator for Gal(K∞/K). The claim that H0(Gal(K∞/K), X) = 0 is equivalent to
the claim that OK → H1

cts(Gal(K∞/K),OK̂∞) is injective. If α ∈ OK lies in the kernel, then
α = (σ − 1)α′ for α′ ∈ OK̂∞ , but then α = t(α) = t(σ − 1)α′. We claim that t(σ − 1) acts as 0

on K̂∞. Indeed, t(σ− 1) is zero on each Kn, hence on K∞, and so by continuity it is zero on all
of K̂∞.

We now turn toH1
cts(Gal(K∞/K),OK̂∞). Let us write the superscript t = 0 to mean the kernel

of the normalized trace t wherever this is defined. For each n ≥ 1, the K-linear operator σ− 1 is
injective on the finite-dimensional K-vector space Kt=0

n , since the kernel is K ∩Kt=0
n = 0. (The

operator t is the identity on K.) Therefore the restriction of σ − 1 to Kt=0
n is an isomorphism;

write (σ− 1)−1 for its inverse. The inequality (4.2.16) shows that (σ− 1)−1 is bounded on Kt=0
∞
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with operator norm ≤ |p|−1−1/p(p−1), so it extends to an operator (σ − 1)−1 on K̂t=0
∞ with the

same operator norm. Therefore

H1
cts(Gal(K∞/K),Ot=0

K̂∞
) ∼=

Ot=0
K̂∞

(σ − 1)Ot=0
K̂∞

is α-torsion for any α ∈ OK with v(α) ≥ 1 + 1/p(p− 1).
Consider the following diagram of p-adically complete groups, in which both rows are exact:

0 // OK //

��

OK̂∞

=

��

// X

��

// 0

0 // OK ⊕ Ot=0
K̂∞

// OK̂∞
// W // 0

The inequality (4.2.15) says thatW is β-torsion for any β ∈ OK with v(β) ≥ 1/(p−1), because
for any x ∈ OK̂∞ , βt(x) ∈ OK , and then βx = βt(x) + β(x− t(x)) lies in OK ⊕ Ot=0

K̂∞
.

The long exact sequences in cohomology associated to the above exact sequences read in part:

0 // H1
cts(OK)

��

// H1
cts(OK̂∞) //

=

��

H1
cts(X)

��

// 0

0 //

(
H1

cts(OK)⊕H1
cts(O

t=0
K̂∞

)
)
/H0(W ) // H1

cts(OK̂∞) // H1
cts(W ) // 0

By the snake lemma, there is an exact sequence

0→ H1
cts(O

t=0
K̂∞

)/H0(W )→ H1
cts(X)→ H1

cts(W )→ 0

As H1
cts(O

t=0
K̂∞

) is killed by any element α ∈ OK with v(α) ≥ 1+1/p(p−1), and H1
cts(W ) is killed

by any element β with v(β) ≥ 1/(p − 1), we find that H1
cts(X) is killed by any product αβ of

such elements.
If eK is sufficiently large (to wit eK ≥ p(p−1)), then any γ ∈ OK with v(γ) ≥ 1+1/p(p−1)+

1/(p− 1) = 1 + (p+ 1)/p(p− 1) can be factored into such a product αβ, and the lemma would
follow for K. But if for instance eK = 1, we could only conclude from the above that H1

cts(X) is
p3-torsion.

To improve the result as stated in the proposition, let L/K be a sufficiently ramified tame
Galois extension with group G. (For example, L could be the splitting field of xn − πK , where
πK is a uniformizer of K and n is sufficiently large and prime to p.) Since each Kn/K is totally
wildly ramified, Kn and L are linearly disjoint over K. Let L∞ = K∞L, so that L∞/L is a
sufficiently ramified Zp-extension by Lemma 4.2.1(3). We abuse notation by referring to both
Gal(K∞/K) and Gal(L∞/L) as Zp, and we identify Gal(L∞/K) = G × Zp. Define a complex
XL with G-action by the exact triangle

O
hZp

L → O
hZp

L̂∞
→ XL.

Applying derived G-invariants, we obtain an exact triangle

O
h(G×Zp)
L → O

h(G×Zp)

L̂∞
→ XhGL

Since Ln/Kn is a tame extension with group G, Noether’s theorem states that OLn
is a free

OKn
[G]-module. For everym, OLn

/pm is a free (OKn
/pm)[G]-module, and soHi(G,OLn

/pm) = 0
for all i > 0. Therefore

Hi(G,OL̂∞) = lim←−
m

lim−→
n

Hi(G,OLn/p
m) = 0,
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meaning that OG
L̂∞

= H0(G,OL̂∞) = OK̂∞ . Our exact triangle now reads

O
hZp

K → O
hZp

K̂∞
→ XhGL ,

so that X = XhGL . By the argument above, Hi(XL) = 0 for all i 6= 1, and H1(XL) is p2- or
p3-torsion as p is odd or even. By Hochschild-Serre we have H1(X) = H0(G,H1(XL)), which is
subject to the same bounds.

Now consider the general case: Let N be large enough so that K∞/KN is sufficiently ramified.
Let X = OK̂∞/OK and XN = OK̂∞/OKN

, so that we have an exact sequence of p-adically
complete abelian groups with Gal(K∞/K)-action:

0→ OKN
/OK → X → XN → 0. (4.2.19)

By the above argument we have that H0(Gal(K∞/KN ), XN ) = 0 and H1
cts(Gal(K∞/KN ), XN )

is p2-torsion or p3-torsion, as p is odd or even.
Consider the H0 part of the long exact sequence associated to (4.2.19):

H0(Gal(K∞/K),OKN
/OK)→ H0(Gal(K∞/K), X)→ H0(Gal(K∞/K), XN ).

We have H0(Gal(K∞/K),OKN
/OK) = H0(Gal(KN/K),OKN

/OK) = 0 (for instance, because it
injects intoH1(Gal(KN/K),OK) = 0). AlsoH0(Gal(K∞/K), XN ) ⊂ H0(Gal(K∞/KN ), XN ) =
0. Therefore H0(Gal(K∞/K), X) = 0.

Now consider the H1 part of the long exact sequence associated to (4.2.19), relative to the
group Gal(K∞/KN ):

H1
cts(Gal(K∞/KN ),OKN

/OK)→ H1
cts(Gal(K∞/KN ), X)→ H1

cts(Gal(K∞/KN ), XN ) (4.2.20)

The term H1
cts(Gal(K∞/KN ),OKN

/OK) is isomorphic to OKN
/OK itself. The terms in (4.2.20)

carry a residual action of Gal(KN/K); taking invariants reveals thatH1
cts(Gal(K∞/KN ), X)Gal(KN/K)

injects into H1
cts(Gal(K∞/KN ), XN ) and is therefore p2- or p3-torsion.

Finally, consider the inflation-restriction sequence which calculates H1
cts(Gal(K∞/K), X):

H1(Gal(KN/K), XGal(K∞/KN ))→ H1
cts(Gal(K∞/K), X)→ H1

cts(Gal(K∞/KN ), X)Gal(KN/K)

The term on the left is pN -torson (this being the order of Gal(KN/K)). Therefore the middle
term is pN+2- or pN+3-torsion as p is odd or even. �

4.3. The Galois cohomology of OC . Keep the assumption that K is a local field of character-
istic (0, p). Let K be an algebraic closure, and let C be the metric completion of K. The Galois
group ΓK = Gal(K/K) acts continuously on K and so extends to a continuous action on C and
on OC . We are interested in OhΓK

C , the complex which computes the continuous cohomology
H∗cts(ΓK ,OC). Tate’s idea is to use a ramified Zp-extension K∞/K as an intermediary:

OhΓK

C
∼=
(
O
hGal(K/K∞)
C

)hGal(K∞/K)

. (4.3.1)

First we deal with the inner term on the right side of (4.3.1), relating to the continuous coho-
mology H∗cts(Gal(K/K∞),OC). Since Gal(K/K∞) acts trivially on OK̂∞ ⊂ OC , this cohomology
has the structure of a OK̂∞ -module. For a module M over a non-discretely valued valuation ring
such as OK̂∞ , one says that M is almost zero if it is α-torsion for any α ∈ OK̂∞ with v(α) > 0.

Theorem 4.3.2. We have

Hi
cts(Gal(K/K∞),OC) =

{
OK̂∞ , i = 0

almost zero, i > 0
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Proof. We only sketch the proof, focusing only on the case i > 0 (the i = 0 case being an
instance of Ax’s theorem anyway) and referring the reader to [Tat67, §3, Corollary 1] for details.
We have OC ∼= lim←−n lim−→L/K∞

OL/p
n, as L/K∞ ranges over finite Galois extensions. On the level

of continuous cohomology we find:

Hi
cts(Gal(K/K∞),OC) ∼= lim←−

n

lim−→
L/K∞

Hi(Gal(L/K∞),OL/p
nOL),

so that we are reduced to proving that Hi(Gal(L/K∞),OL/p
nOL) is almost zero for every i > 0.

Therefore let L/K∞ be a finite Galois extension. L descends to Kn for some n ≥ 0, which is
to say L = LnK∞ for some finite extension Ln/Kn. Let LN = LnKN for N ≥ n. The essential
phenomenon is that the ramification in LN/KN decays as N →∞, in the sense that the valuation
of the discriminant v(dLN/KN

) tends to 0. Knowing the valuation of the discriminant in a Galois
extension of local fields can be used to control the image of the ring of integers under the trace
map (see once again [Ser79, Chapter V, §3, Lemma 4]); the result is that for any α ∈ OK∞ with
v(α) > 0, we have α = trL/K∞(β) for some β ∈ OL.

Finally, for all i > 0 Tate defines a cup product operation c 7→ β ∪ c from i-cochains to
(i−1)-cochains (on the group Gal(L/K∞) and valued in OL/p

nOL), which has the property that
αc− d(β ∪ c) = β ∪ dc, where d is the differential. From this relation one obtains the result that
if c is a cocycle, then αc is a coboundary for all α ∈ OK∞ with v(α) > 0. This is exactly the
statement that Hi(Gal(L/K),OL/p

nOL) is almost zero for i > 0. �

Remark 4.3.3. The phenomena appearing in the proof of Theorem 4.3.2 are hallmarks of the
theory of perfectoid algebras [Sch12], of which K∞ (or strictly speaking its completion) is an
example. For such a perfectoid algebra R with subring of bounded elements R◦, Scholze’s
generalization of Faltings’ purity theorem [Sch12, Theorem 7.9] states that whenever S is a finite
étale R-algebra, S◦ is almost finite étale over R◦. Applied to the case of a finite extension L/K∞,
one can deduce from this theorem the essential claim that trL/K∞(OL) contains the maximal
ideal of OK .

Corollary 4.3.4. Define a complex Y0 of solid OK̂∞-modules by the exact triangle

OK̂∞ → O
hGal(K/K∞)
C → Y0, (4.3.5)

where the first morphism is induced from OK̂∞ ↪→ OC . Then H0(Y0) = 0, and for all i > 0,
Hi(Y0) is almost zero in the sense that the action of any α ∈ OK̂∞ with v(α) > 0 on it is zero.

Proof. This is simply a translation of Theorem 4.3.2 in terms of complexes. �

The complex Y0 in Corollary 4.3.4 admits a residual Gal(K∞/K)-action, so we may define
the derived invariants Y := Y

hGal(K∞/K)
0 , which fit into an exact triangle:

O
hGal(K∞/K)

K̂∞
→ OhΓK

C → Y. (4.3.6)

Lemma 4.3.7. We have H0(Y) = 0, and for all i ≥ 1, Hi(Y) is p-torsion if p is odd, and
p2-torsion if p = 2.

Proof. Consider the spectral sequence

Hi
cts(Gal(K∞/K), Hj(Y0)) =⇒ Hi+j(Y).

The left side only has nonzero terms for i = 0, 1. By Corollary 4.3.4, we have H0(Y0) = 0 and
(as an OK-module) Hi(Y0) is π-torsion for all i > 0, where π is a uniformizer for K. Therefore
Hi(Y) is π2-torsion for all i > 0. In particular, Hi(Y) is p2-torsion.
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To improve the result as in the lemma, we may assume that p is odd. Let L/K be a finite
Galois extension such that eL/K ≥ 2 and p - # Gal(L/K). For instance, L/K could be the
splitting field of x` − π, where ` is a prime such that p - `(`− 1). Let YL be the complex defined
analogously to Y, using L∞ = LK∞, so that we have an exact triangle:

O
hGal(L∞/L)

L̂∞
→ OhΓL

C → YL. (4.3.8)

SinceK∞ and L are linearly disjoint overK, we have Gal(L∞/K) = Gal(L∞/L)×Gal(L∞/K∞).
Taking derived Gal(L/K)-invariants in (4.3.8) gives an exact triangle:(

O
hGal(L∞/K∞)

L̂∞

)hGal(K∞/K)

→ OhΓK

C → Y
hGal(L/K)
L .

By Noether’s theorem, OhGal(L∞/K∞)

L̂∞
∼= OK̂∞ , and (comparing with the definition of Y) we find

Y ∼= Y
hGal(L/K)
L . Now consider the spectral sequence

Hi(Gal(L/K), Hj(YL)) =⇒ Hi+j(Y
hGal(L/K)
L )

Since # Gal(L/K) is invertible in OK , the left side is only nonzero for i = 0, and so Hi(Y ) ∼=
Hi(YL)Gal(L/K). We have just seen that this is π2

L-torsion, where πL is a uniformizer for L. Since
eL/K ≥ 2, we find that Hi(Y ) is π-torsion as well. �

We have a composition of morphisms:

O
hGal(K∞/K)
K → O

hGal(K∞/K)

K̂∞
→ OhΓK

C (4.3.9)

where the first is induced by the inclusion OK → OK̂∞ and the second appears in (4.3.6).

Theorem 4.3.10. Let K∞/K be a ramified Zp-extension, and let N = NK∞/K be large enough
so that K∞/KN is sufficiently ramified. Define Z by the exact triangle

O
hGal(K∞/K)
K → OhΓK

C → Z,

where the first morphism is the composition in (4.3.9). Then:

Hi(Z) =


0, i = 0,

pN+3-torsion (resp., pN+5-torsion), i = 1

p-torsion (resp., p2-torsion), i ≥ 2

as p is odd or even, respectively.
If L/K is a tame Galois extension and L∞ = K∞L, then L∞/L is a ramified Zp-extension,

and we can take NL∞/L = NK∞/K .

Proof. Consider the three exact triangles:

O
hGal(K∞/K)
K →O

hGal(K∞/K)

K̂∞
→X

O
hGal(K∞/K)

K̂∞
→OhΓK

C →Y

O
hGal(K∞/K)
K →OhΓK

C →Z

Here the first triangle is from Proposition 4.2.17 (more precisely, the remark following it), the
second from (4.3.6), and the third is as in the theorem. By the octahedral axiom, we have an exact
triangle X → Z → Y. The bounds in the theorem now follow by combining Proposition 4.2.17
with Lemma 4.3.7.

The statement about tame extensions follows from Lemma 4.2.6. �

Finally, we can prove Theorem 4.0.4, repeated here for convenience.
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Theorem 4.3.11. Let K be a local field of characteristic (0, p). Let C be the completion of an
algebraic closure K/K. Let ΓK = Gal(K/K). Then:

(1) H0(ΓK ,OC) = OK .
(2) There exists an isomorphism of OK-modules

H1
cts(ΓK ,OC) ∼= OK ⊕ T

where T is p4-torsion (resp., p6-torsion) as p is odd or even, respectively. If K is tame,
or if it is a cyclotomic extension of a tame field, this bound can be improved to p3 (resp.,
p5).

(3) For i > 1, Hi
cts(ΓK ,OC) is p-torsion (resp., p2-torsion) as p is odd or even, respectively.

Proof. Let K∞/K be a ramified Zp-extension. Taking the long exact sequence associated to the
exact triangle appearing in Theorem 4.3.10, we obtain H0(ΓK ,OC) = OK , an exact sequence

0→ OK → H1
cts(ΓK ,OC)→ H1(Z)→ 0,

and isomorphisms Hi
cts(ΓK ,OC) ∼= Hi(Z) for i ≥ 2. The cases i = 0 and i ≥ 2 of the theorem

follow directly from Theorem 4.3.10. WhenK∞/K can be taken to be sufficiently ramified (which
includes the cases listed in part (2) of the theorem), then H1(Z) is p3- or p5-torsion as p is odd or
even, and then Lemma 4.3.12 below applies to show that H1

cts(ΓK ,OC) has the structure claimed
by the theorem.

In the general case, let N be large enough so that K∞/KN is sufficiently ramified. Let
G = Gal(KN/K). The inflation-restriction sequence for the tower K∞/Kn/K reads in part:

H1(G,OKN
)→ H1

cts(ΓK ,OC)→ H1
cts(ΓKN

,OC)G

(For the term on the left, we have used Ax’s theorem to identify H0(ΓKN
,OC) with OKN

.) By
Sen’s theorem (Theorem 4.0.2), the term on the left is p-torsion. Since K∞/KN is sufficiently
ramified, all torsion in H1

cts(ΓKN
,OC) is killed by p3 (resp., p5). Therefore p4 (resp., p6) kills all

torsion in H1
cts(ΓK ,OC). �

Lemma 4.3.12. Given an exact sequence of OK-modules

0→M1 →M →M2 → 0

with M1 finite free of rank r and M2 killed by pn, there exists an isomorphism M ∼= O⊕rK ⊕ T ,
where T is pn-torsion.

Proof. Let T ⊂M be the submodule consisting of torsion elements, and let N = M/T . We may
identifyM1 andN with OK-submodules ofM⊗OK

K ∼= Kr in such a way thatM1 ⊂ N ⊂ p−nM1.
Since OK is Noetherian andM1 is finitely generated, N is finitely generated as well, and therefore
(since it is torsion-free and spans Kr) it must be free of rank r. Let M0 ⊂ M be the free
submodule spanned by lifts of generators of N . Then M = M0 ⊕ T . �

4.4. Galois cohomology of characters. Once again suppose K is a local field of characteristic
(0, p). Let

χ : Gal(K/K)→ Z×p
be a character; i.e., a continuous homomorphism. We assume that χ is infinitely ramified, in the
sense that the image of the inertia group under χ is infinite (equivalently, this image has finite
index). Let K∞ be the fixed field of the kernel of χ. Let Zp(χ) be Zp with an action of Gal(K/K)

through χ. Then if M is any p-adically complete Gal(K/K)-module, we may define a new such
module by M(χ) = M ⊗Zp

Zp(χ). The present goal is to bound the continuous cohomology of
Gal(K∞/K) acting on OK̂∞(χ).

Let U ⊂ Z×p be the largest subgroup which is isomorphic to Zp. Thus U = 1 + pZp for p odd
and U = 1 + p2Zp for p = 2. Let K0 be the fixed field of χ−1(U); then K∞/K0 is a ramified
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Zp-extension. As usual, we let Kn/K0 be the fixed field of pn Gal(K∞/K0). Finally, we define
an integer r ≥ 1 by

χ(Gal(K∞/K0)) = 1 + prZp.

Lemma 4.4.1. Let χ be a non-trivial character and N ≥ 0 be large enough so that K∞/KN is
sufficiently ramified (see Lemma 4.2.6). Then

Hi
cts(Gal(K∞/K0),OK̂∞(χ)) =

{
0, i = 0

(pk-torsion), i = 1.

Here we may take k = N + r + 1 if p is odd and k = N + r + 2 if p = 2.

Proof. We first prove the result in the case that K∞/K0 is sufficiently ramified. Write t : K̂∞ →
K0 for the normalized trace. As in the proof of Proposition 4.2.17, we make use of the fact that
the inclusion

OK0
⊕ Ot=0

K̂∞
↪→ OK̂∞

has α-torsion cokernel for any α ∈ OKN
with v(α) ≥ 1/(p− 1).

We are therefore reduced to studying the continuous cohomology of Gal(K∞/K0) acting
on OK0

(χ) and Ot=0
K̂∞

(χ), respectively. Let σ ∈ Gal(K∞/K0) be a topological generator, and
let λ = χ(σ)−1. Then for any p-adically complete Gal(K∞/K0)-module M , the continuous
cohomology of M(χ) is computed by the complex σ − λ : M →M . Note that λ = 1 + pru for a
p-adic unit u ∈ Z×p .

In the case M = OK0
, we have H0(Gal(K∞/K0),OK0

(χ)) = 0, since σ acts on OK0
(χ) as the

scalar λ 6= 1. On the other hand H1
cts(Gal(K∞/K0),OK0

(χ)) is pr-torsion, being the cokernel of
multiplication by λ− 1 = pru.

To treat M = Ot=0
K̂∞

, we apply Lemma 4.2.12 to the sufficiently ramified extension K∞/K0.

We find that (σ − 1)−1 is defined on K̂t=0
∞ and has operator norm ≤ |p|−1−1/p(p−1).

Let
µ = (σ − 1)−1(σ − λ) = 1− (λ− 1)(σ − 1)−1.

In the case that r ≥ 2, we have |λ− 1| |σ − 1|−1
< 1, and so µ has continuous inverse satisfying∣∣µ−1

∣∣ ≤ 1. Therefore (σ− λ)−1 = (σ− 1)−1µ−1 exists on K̂t=0
∞ and has operator norm bounded

by |p|−1−1/p(p−1). Thus H0(Gal(K∞/K0),Ot=0
K̂∞

(χ)) = 0 and H1
cts(Gal(K∞/K0),Ot=0

K̂∞
(χ)) is

annihilated by any element α ∈ OK0
with v(α) ≥ 1 + 1/p(p− 1).

If r = 1, the idea is to apply the same argument to the sufficiently ramified extension K∞/K1,
noting that λp = χ(σp) now satisfies |λp − 1| |σp − 1|−1

< 1. Thus Hi
cts(Gal(K∞/K1),Ot=0

K̂∞
(χ))

is 0 for i = 0 and is p1+1/p(p−1)-torsion for i = 1. The inflation-restriction sequence allows us to
deduce the same results for K∞/K0.

We have found that H0(Gal(K∞/K0),OK̂∞(χ)) = 0 and H1
cts(Gal(K∞/K0),OK̂∞(χ)) is α-

torsion for any α ∈ OK0
with v(α) ≥ max {r, 1 + 1/p(p− 1)}+ 1/(p− 1). The latter is ≥ r + 1

or ≥ r+ 2 as p is odd or even, respectively, which implies the lemma in the case that K∞/K0 is
sufficiently ramified. (To handle the problem that OK0 may not contain elements of sufficiently
small valuation, it may be necessary to pass to a tamely ramified extension L/K0 as in the proof
of Proposition 4.2.17.)

In general, suppose N ≥ 0 is large enough so that K∞/KN is sufficientlty ramified. Note
that Gal(K∞/KN ) is generated by σp

N

and that χ(σp
N

) ≡ 1 (mod pN+r). Thus the preced-
ing argument shows that H0

cts(Gal(K∞/KN ),OK̂∞(χ)) = 0 and H1
cts(Gal(K∞/KN ),OK̂∞(χ)) is

pN+r+1- or pN+r+2-torsion as p is odd or even, respectively. The inflation-restriction sequence
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for the tower K∞/KN/K0 reads:

H1(Gal(KN/K0),OK̂∞(χ)Gal(K∞/KN )) → H1
cts(Gal(K∞/K0),OK̂∞(χ)Gal(K∞/KN ))

→ H1
cts(Gal(K∞/KN ),OK̂∞)Gal(KN/K0)

By the above argument, the term on the left is zero, and we get the result. �

Lemma 4.4.2. Assume that K∞/KN is sufficiently ramified. Let ap = 0 if p is odd, and ap = 1
if p = 2. We have:

Hi
cts(Gal(K∞/K),OK̂∞(χ)) =


0, i = 0,

(pN+r+1+ap -torsion), i = 1,

(pap -torsion), i > 1.

Proof. Combine the spectral sequence

Hi(Gal(K0/K), Hj
cts(Gal(K∞/K0),OK̂∞(χ))) =⇒ Hi+j

cts (Gal(K∞/K),OK̂∞(χ))

with Lemma 4.4.1. The only terms on the left that contribute occur when j = 1. If p is odd,
the i > 0 terms on the left side vanish because # Gal(K0/K) is invertible in OK . If p = 2
then # Gal(K0/K) = 2, and the best we can say is that the i > 0 terms on the left side are
2-torsion. �

At this point we specialize to the case of the cyclotomic character

χcycl : ΓK → Z×p ,

defined by the relation τ(ζ) = ζχcycl(τ) for any τ ∈ ΓK and any pth power root of unity ζ. For
any j ∈ Z we write Zp(j) = Zp(χjcycl) for the jth Tate twist, and similarly OC(j) = OC ⊗ Zp(j).

We conclude the section with a bound on the cohomology of OC(j).

Theorem 4.4.3. With notation as in Theorem 4.0.4, let j 6= 0 be an integer, and let OC(j) be
the jth Tate twist of OC as a Gal(K/K)-module. Then:

(1) H0(ΓK ,OC(j)) = 0.
(2) H1

cts(ΓK ,OC(j)) is pM+v(j)-torsion. Here M = MK is a constant which only depends on
K and which is insensitive to passage to a tamely ramified extension of K. If p - eK we
may take M = 2 if p is odd and M = 5 if p = 2.

(3) For i ≥ 2, Hi
cts(ΓK ,OC(j)) is p-torsion if p is odd and p3-torsion if p = 2.

(We recall that v(j) the p-adic valuation of j, normalized so that v(p) = 1.)

Proof. Let K∞/K be the extension obtained by adjoining all pth power roots of unity. As in the
beginning of this subsection, we let K0/K be the minimal subextension such that K∞/K0 is a
Zp-extension, and we define an integer r ≥ 1 by χcycl(Gal(K∞/K0)) = 1 + prZp. Then

χjcycl(Gal(K∞/K0)) = (1 + prZp)j = 1 + pr+v(j)Zp.

Lemma 4.4.2 bounds the cohomologyHi
cts(Gal(K∞/K),OK̂∞(j)) in terms of the integerN = NK

for which K∞/KN is infinitely ramified: we have H0 = 0, H1 is pN+r+v(j)+ap -torsion, and H2

is pap -torsion, where ap is 0 or 1 as p is odd or even.
As in Lemma 4.3.7, define a complex Y0 by the exact triangle

OK̂∞ → O
hGal(K/K∞)
C → Y0.

Then H0(Y0) = 0 and Hi(Y0) is almost zero for i > 0. Twisting by χjcycl and taking derived
Gal(K∞/K)-invariants, we obtain an exact triangle

OK̂∞(j)hGal(K∞/K) → OC(j)hΓK → Y,
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where Y = Y0(j)hGal(K∞/K). The same method of proof for Lemma 4.3.7 shows that H0(Y) =
0 and Hi(Y) is pap+1-torsion for i > 0. Combining these bounds with those obtained in
Lemma 4.4.2, we obtain the bounds appearing in the theorem. �

5. Pro-étale cohomology of rigid-analytic spaces

Let K be a local field of characteristic (0, p), and let X be a smooth rigid-analytic space over
K. We consider three topologies on X in order of coarsest to finest:

(1) The analytic topology Xan, whose opens are simply the open subsets of the underlying
topological space of X,

(2) The étale topology Xét, whose opens are étale morphisms U → X,
(3) The pro-étale topology Xproét, whose opens are formal limits U = lim←−Ui, where each

Ui → X is étale.

In this section, we present some comparison results relating the cohomology of the structure
sheaf among these sites. For the purposes of exposition, we might start with the case of the
rational structure sheaf OX . Recall from Section 3 the notation ÔX for the completed structure
sheaf on Xproét.

The case that X = SpaK is a single point is instructive. In this case H∗(Xan,OX) = K
rather trivially, and H∗(Xét,OX) is the Galois cohomology H∗cts(Gal(K/K),K), where one must
put the discrete topology on K; by the normal basis theorem this is K again. By contrast,
H∗(Xproét, ÔX) may be identified with H∗cts(Gal(K/K), C), where C is the p-adic completion of
K (with its p-adic topology). Tate’s theorem (Theorem 4.0.3) states that this is isomorphic to
K[ε].

In the general case where X is a smooth rigid-analytic variety over K, it is still the case that
H∗(Xan,OX) is isomorphic to H∗(Xét,OX) by étale descent, but of course H∗(Xproét, ÔX) may
be different. The general pattern we observed is that the difference is accounted for entirely by
the pro-étale cohomology of the base SpaK. In the next subsection we make this explicit for the
rational structure sheaf before passing to the study of the integral structure sheaf in subsequent
subsections.

5.1. The rational comparison isomorphism. The following is a rapid discussion of the sort
of comparison result we need, in the much simpler situation where p has been inverted. We leave
precise details to the subsections that follow.

Let C be an algebraically closed nonarchimedean field of characteristic (0, p), and let X be
a smooth rigid-analytic space over C. We recall here a theorem of Scholze, which relates the
difference between Xét and Xproét to differential forms on X. Let us write ΩjX/C for the sheaf of
differential j-forms, considered as a sheaf of OX -modules on Xét. Also we write

ν : Xproét → Xét

for the projection map between sites.

Theorem 5.1.1 ([Sch13b, Proposition 3.23]). Let X be a smooth rigid-analytic space over C. Let
ν : Xproét → Xét be the projection. Then for each j ≥ 0 there is an isomorphism of OXét

-modules:

ΩjXét/C
(−j) ∼= Rjν∗ÔX .

The essential calculation behind Theorem 5.1.1 goes back to Faltings [Fal88]. The assumption
that X is smooth means that (locally on Xét) it admits an étale morphism to the d-dimensional



46 BARTHEL, SCHLANK, STAPLETON, AND WEINSTEIN

torus

Td = Spa(Rd, R
+
d )

R+
d = OC

〈
T±1 , . . . , T

±1
d

〉
Rd = R+

d [1/p].

Therefore let us explain the proof of Theorem 5.1.1 in the case of X = Td. There is an affinoid
perfectoid pro-étale torsor T̃d → Td for the group Zp(1)d, namely

T̃d = Spa(R̃d, R̃
+
d )

R̃+
d = OC

〈
T
±1/p∞

1 , . . . , T
±1/p∞

d

〉
R̃d = R̃+

d [1/p].

(Here Zp(1) = lim←−µpn , where µpn is the group of pnth roots of 1.) Affinoid perfectoid covers in
Xproét are convenient because if U is affinoid perfectoid, then Hi(Uproét, ÔU ) = 0 is for i > 0
[Sch13a, Lemma 4.10]. As in the proof of Proposition 3.6.3, this allows us to compute the
pro-étale cohomology of X in terms of group cohomology:

H∗(Tdproét, ÔTd) ∼= H∗cts(Zp(1)d, R̃d)

But now an explicit calculation in group cohomology shows that the natural map

H∗cts(Zp(1)d, Rd)→ H∗cts(Zp(1)d, R̃d)

is an isomorphism. Note that Hi(Zp(1)d, Rd) ∼=
∧i
Rd

(Rd)
d.

The upshot is that Riν∗ÔX ∼=
∧i

R1ν∗ÔX , and R1ν∗ÔX is a locally free OXét
-module of rank

d. This already suggests that Rjν∗ÔX should be related to differentials. We refer the reader to
[Sch13b, Lemma 3.24] for a functorial construction of the isomorphism in Theorem 5.1.1.

Now suppose once again that X is a rigid-analytic space over a local field K. Write C for the
completion of an algebraic closure K, and write ΓK = Gal(K/K). Let X be the base change of
X to C. Once again we write ν : Xproét → Xét for the projection; let ν : Xproét → X ét be the
corresponding projection for X. We have

Rν∗ÔX = Rν∗(Ô
hΓK

X
) = (R(ν)∗ÔX)hΓK .

Applying Theorem 5.1.1, we find that (R(ν)∗ÔX)hΓK admits a filtration with graded pieces
Ωj
X/C

(−j)hΓK . For an affinoid object U ∈ Xét, the global sections of the jth piece on U are

Γ(U,Ωj
X/C

(−j)hΓK ) ∼= (Γ(U,ΩjU/K)⊗̂KC(−j))hΓK

∼= Γ(U,ΩjU/K)⊗̂KC(−j)hΓK .

(Here the ⊗̂ means completed tensor product of Banach K-algebras.) By Theorem 4.0.3, the
terms with nonzero j vanish, and the j = 0 term is isomorphic to Γ(U,OXét

)[ε]. (We remind the
reader that for an abelian group Y , Y [ε] is the complex Y ⊕ Y [1].) Therefore

Rν∗OX ∼= OXét
[ε].

We have proved:

Theorem 5.1.2. Let K be a discretely valued nonarchimedean field of characteristic 0 with
perfect residue field. Let X/K be a smooth rigid-analytic space. There is an isomorphism

RΓ(Xét,OX)[ε] ∼= RΓ(Xproét, ÔX).
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5.2. Integral p-adic Hodge theory. Suppose again that C is an algebraically closed nonar-
chimedean field of characteristic (0, p), and that X is a smooth rigid-analytic space over C. When
X has a sufficiently nice formal model over OC , the theorems of [BMS18] and [vK19] can be used
to gain control over the integral pro-étale cohomology RΓ(Xproét, Ô

+
X).

Definition 5.2.1 ([vK19]). Let K be a nonarchimedean field, and let X be a formal scheme over
Spf OK . We say that X is semistable of dimension d if X can be covered by affine opens U which
admit an étale OK-morphism to a formal scheme of the form

Spf OK
〈
T0, . . . , Tr, T

±
r+1, . . . , T

±
d

〉
/(T0 · · ·Tr − π) (5.2.2)

where 0 ≤ r ≤ d, and π ∈ OK is a nonunit. (The values of r and π may vary with U.)

Then X carries a log structure associated to the subpresheafM = OXét
∩OXét

[1/p]× of OXét
. Let

Ω1
Xét,log be the sheaf of log-differentials on Xét; that is, the sheaf generated by Kähler differentials

Ω1
Xét

together with logarithmic differentials df/f for f ∈M. (We refer to continuous differentials
throughout; the right way to construct Ω1

Xét,log is to do it over OC/pn and then take a limit over
n.) The formal scheme X is log-smooth, and Ω1

Xét,log is a locally free OXét
-module of rank d. (See

[Kat89, §3] for proofs of these claims.) Finally, let ΩjXét,log =
∧j

Ω1
Xét,log.

If X is affine and semistable, then its adic generic fiber X = Xad
C is a smooth rigid-analytic

variety.

Lemma 5.2.3. Let X be an affine semistable formal scheme, with generic fiber X. The natural
map O(X)→ O+(X) is an isomorphism.

Proof. Following the recipe for calculating the generic fiber of X → Spa(OK ,OK) (see [SW20,
Proposition 5.1.5], noting that this map is “analytic”), we find that O+(X) is the integral closure
of O(X) in O(X)⊗OK

K. The statement is étale local on X, so we may assumine that X has the
form (5.2.2), in which case the result is true because the coordinate ring is normal. �

If U ∈ Xét, then the adic generic fiber of U is an object of Xproét, which is to say there is a
morphism of sites:

ν : Xproét → Xét.

Assume now that the base field is an algebraically closed nonarchimedean field C of charac-
teristic (0, p). The integral version of Theorem 5.1.1 relates the difference between Xproét and
Xét in terms of the sheaf of differentials ΩjXét,log. To make this work there are two additional
ingredients: the Breuil–Kisin twist and the décalage functor.

The Breuil–Kisin twist OC {1} is a free OC-module of rank 1 carrying a Gal(K/K)-action.
See [BMS18, Definition 8.2] for its precise definition. There is a canonical Galois-equivariant
injection OC(1) ↪→ OC {1} whose cokernel is killed by (ζp − 1), where ζp is a primitive pth root
of 1. For j ∈ Z we let OC {j} be the jth tensor power of OC {1}.

The décalage functor will be reviewed in Section 5.5. In our context it appears as an end-
ofunctor Lη(ζp−1) on the derived category of OXOC,ét

-modules. For the moment we need two
facts concerning Lη(ζp−1): it is a lax symmetric monoidal functor, and also there is a natural
transformation

a : Lη(ζp−1)C→ C (5.2.4)
whenever C is bounded below by 0. Let

Ω̃X = Lη(ζp−1)Rν∗Ô
+
X ,

so that Ω̃X is a complex of OXét
-modules.

The following theorem is the basis for all the comparison isomorphisms that follow.
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Theorem 5.2.5 ([BMS18, Theorem 8.3],[vK19, Theorem 4.11]). Let X be a semistable affine
formal scheme over OC . For each j ≥ 0 there is a canonical isomorphism of sheaves of OXét

-
modules:

ΩjXét,log {−j} ∼= Hj(Ω̃X).

Now assume that X is a semistable affine formal scheme over OK and denote by X the base
change to OC . We have

ΩjXOC,ét,log
∼= ΩjXét,log⊗̂OK

OC

(where ⊗̂ means p-adically completed tensor product). The theorem above can be applied to
XOC

. The group ΓK acts on ΩjXOC,ét
and Ω̃. (Note that ΓK preserves the ideal (ζp − 1) and so

its action commutes with Lη(ζp−1).)
We get the following corollary of the theorem:

Corollary 5.2.6. Let X is a semistable affine formal scheme over OK . For each j ≥ 0, there is
a canonical ΓK-equivariant isomorphism

ΩjXét,log⊗̂OK
OC {−j} ∼= Hj(Ω̃XOC

).

5.3. The integral comparison isomorphism for affine semistable formal schemes. The
idea now is to present integral versions of the comparison isomorphism in Theorem 5.1.2. The
first version applies to the setting where K is a local field of characteristic (0, p), and X is a
rigid-analytic space over K admitting an affine semistable model X over OK . We will write O

for the structure sheaf of Xét, and Ô+ for the completed integral structure sheaf on Xproét.
Consider the projection ν : Xproét → X. It pulls back functions to integral functions, which is

to say we have an OK-algebra homomorphism O → ν∗Ô
+. Taking derived global sections and

noting that O is acyclic (since X is affine), we obtain a homomorphism of OK-algebra objects in
D(Ab):

ν∗ : O(X)→ RΓ(Xproét, Ô
+)

Similarly, the structure morphism s : X → SpaK induces a pullback map on the level of
cohomology (here we confuse K with SpaK):

s∗ : RΓ(Kproét, Ô
+)→ RΓ(Xproét, Ô

+)

In Example 3.6.4 we have identified RΓ(Kproét, Ô
+) with the Galois cohomology RΓcts(ΓK ,OC) =

RΓ∗O
hΓK

C , where ΓK = Gal(K/K).
Let K∞/K be a ramified Zp-extension. There is no harm in assuming that K∞/K is the

cyclotomic Zp-extension (see Section 4.2). Theorem 4.3.10 states that there is a homomorphism
of OK-algebra objects in D(Ab):

α0 : OK [ε]→ RΓ(Kproét, Ô
+) (5.3.1)

whose cofiber has the bounds:

Hi(cof(α0)) =


0, i = 0,

pMK -torsion, i = 1,

p2-torsion, i ≥ 2.

(5.3.2)

(Throughout this discussion, we identify Gal(K∞/K) with Zp, so that O
hZp

K is identified with
OK [ε].)

Altogether we obtain a homomorphism of OK-algebra objects in D(Ab):

αX : O(X)⊗OK
OK [ε]→ RΓ(Xproét, Ô

+) (5.3.3)

obtained by sending x⊗ y to ν∗(x)⊗ s∗α0(y).
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Theorem 5.3.4. Let K be a local field of characteristic (0, p). Let X be an affine formal scheme
which is semistable over OK of dimension d. Let αX be the map defined in (5.3.3). Then for
all i ∈ Z, Hi(cof(αX)) is killed by pMKt (d), where MKt(d) is a linear function of d which only
depends on the maximal tame extension Kt of K. (This means the function is insensitive to
replacing K with any finite tame extension.)

Note that the theorem recovers Theorem 4.3.10 in the case X = SpaK.

Proof. We will use repeatedly this fact: if a1 and a2 are composable morphisms in D(Ab) and
integers nij for each i ∈ Z, j ∈ {1, 2} such that pnij kills Hi(cof(aj)) for each i, j, then pni1+ni2

kills Hi(cof(a2 ◦ a1)) for all i. As a result, if each of cof(a1), cof(a2) is bounded from below and
subject to the same sort of bounds as appears in the theorem, then so is cof(a2 ◦ a1).

The map αX factors as

O(X)⊗OK
OK [ε]

id⊗α0→ O(X)⊗̂OK
OhΓK

C
ν∗⊗s∗→ RΓ(Xproét, Ô

+).

Since O(X) is a flat OK-module, the cofiber of id⊗α0 is subject to the same bounds as in (5.3.2).
In light of the observation we made in the first paragraph, it is enough to show that cof(ν∗⊗ s∗)
is subject to the same bounds as in the theorem.

Let C be the completion of an algebraic closure of K. Let us write X = X⊗̂OK
OC , which is

to say it is the formal scheme with coordinate ring O(X) = O(X)⊗̂OK
OC . Then X is an affine

semistable formal scheme over OC admitting a semilinear action of ΓK = Gal(K/K), whose
rigid-analytic generic fiber is X = X ×SpaK SpaC. Let ν : XC,proét → Xét be the projection.

We have a commutative diagram:

O(X)⊗̂OK
OhΓK

C

∼=
��

ν∗⊗s∗
// RΓ(Xproét, Ô

+)

∼=
��

O(X)hΓK

∼=
��

// RΓ(XC,proét, Ô
+)hΓK

∼=
��

RΓ(Xét,O)hΓK // RΓ(Xét, Rν∗Ô
+)hΓK

The upper left vertical arrow is the projection formula from Lemma 3.3.5, and the upper right
vertical arrow is descent along the ΓK pro-étale torsor X → X, see Proposition 3.6.3.

In light of this diagram, we wish to bound the cofiber of the lower horizontal morphism,
namely RΓ(Xét, cof ν∗)hΓK , where ν∗ refers to the pullack morphism O→ Rν∗Ô

+.
Throughout this discussion we let Lη mean Lηζp−1. Let Ω̃ = LηRν∗Ô

+ be the sheaf introduced
in Section 5.2. The next key step is to observe that ν∗ : O→ Rν∗Ô

+ factors as a composition of
ΓK-equivariant maps:

O
i→ Ω̃

a→ Rν∗Ô
+

To see this, apply the naturality of a to the morphism ν∗ : O → Rν∗Ô
+ to find a commutative

diagram:

LηO

a

��

Lη(ν∗)
// LηRν∗Ô

+

a

��

O
ν∗

// Rν∗Ô
+
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Now note that since O is concentrated in degree 0 and is torsion-free, the map a : LηO → O is
an isomorphism, and we get the desired factorization of ν∗.

The complex Ω̃ is quasi-coherent by Theorem 5.2.5; that is, it is the complex of sheaves on
Xét associated to the complex of O(X)-modules Ω̃(X) := RΓ(Xét, Ω̃).

The theorem will follow from combining the following two statements:
(1) Let Ω̃≥1 be the cofiber of i : O(X) → Ω̃(X). Then Hi(Ω̃hΓK

≥1 ) obeys bounds of the same
shape as in the theorem.

(2) Regarding a : Ω̃→ Rν∗Ô
+, we have that Hi(cof(a)hΓK ) is 0 for i = 0, and is killed by a

uniform power of p for i ≥ 1, namely p2d+1.
These statements appear as Lemma 5.4.2 and Lemma 5.5.5 below. �

5.4. Controlling Ω̃hΓK

≥1 . By Corollary 5.2.6, Ω̃≥1 admits a filtration whose associated graded
pieces are

Ωjlog(X)⊗̂OK
OC {−j} .

Using the projection formula Lemma 3.3.5, we find that Ω̃hΓK

≥1 has a finite filtration with associ-
ated graded pieces

Ωjlog(X)⊗̂OK
OC {−j}hΓK

for j = 1, . . . , d.
We can use Theorem 4.4.3 to put bounds on the torsion in the cohomology of ΓK with

coefficients in the Breuil–Kisin twists.

Lemma 5.4.1. For all j ≥ 0 we have:
(1) H0(ΓK ,OC {−j}) = 0.
(2) H1

cts(ΓK ,OC {−j}) is pBKt+v(j)-torsion, where BKt only depends on Kt. (In fact we
can take BKt = MKt + 1 for the constant MKt appearing in Theorem 4.0.5.)

(3) For i ≥ 2, Hi
cts(ΓK ,OC {−j}) is pB

′
-torsion, where B′ is an absolute constant. (In fact

we can take B′ = 2 or B′ = 4 as p is odd or even.)

Proof. The key point is that for each j > 0 there is an injective ΓK-equivariant map OC {−j} →
OC(−j) with cokernel killed by p.

Recall the definition of the Breuil-Kisin twist [BMS18, Defintion 8.2]: Start with the module
of Kähler differentials Ω1

OC/Zp
, and let OC {1} be its Tate module; i.e., OC {1} = lim←−Ω1

OC/Zp
,

where the transition maps in the limit are multiplication by p. Then OC {1} is a free OC-module
of rank 1 carrying a ΓK-action.

Let (ζpr )r≥1 be a compatible system of primitive pth power roots of 1; then ω = (dζpr/ζpr )r≥1

represents an element of OC {1}. For all σ ∈ ΓK we have σ(ω) = χcycl(σ)ω, which is to say that
ω induces a ΓK-equivariant map OC(1)→ OC {1}. The cokernel of this map is killed by (ζp−1).

After dualizing and taking j-fold tensor products, we obtain a ΓK-equivariant injective map
OC {−j} → OC(−j) with cokernel killed by (ζp − 1)j . Since v((ζp − 1)j) = j

p−1 we can divide

this map by pb
j

p−1 c to obtain a ΓK-equivariant injective map OC {−j} → OC(−j) with cokernel
killed by p.

The claimed bound now follows from applying the long exact sequence in cohomology together
with Theorem 4.0.5. �

Lemma 5.4.2. For each i ≥ 0, the cohomology Hi(Ω̃hΓK

≥1 ) is killed by pCKt (d), where CKt(d) is
a linear function of d which only depends on Kt.

Proof. The filtration of cof(α2) above gives rise to a spectral sequence

ΩjX,log(X)⊗OK
Hi

cts(ΓK ,OC {−j}) =⇒ Hi+j(cof(α2)),
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where the left side is nonzero only for j = 1, . . . , d and i ≥ 1. Therefore a power of p which
annihilates Hs(cof(α2)) can be obtained by summing together the powers of p which annihilate
Hi

cts(ΓK ,OC) for min {s− d, 1} ≤ i ≤ s − 1. The proposition then follows from Lemma 5.4.1,
noting the crude bound v(j) ≤ d whenever j ≤ d. �

5.5. Controlling the décalage functor. We record here some lemmas regarding the Lη func-
tor, recalling and extending slightly the results in §6 of [BMS18]. Let (T,OT ) be a ringed topos,
and let D(OT ) be the derived category of OT -modules. Let I ⊂ OT be an invertible ideal sheaf.
We use LηI to denote the lax symmetric monoidal functor D(OT )→ D(OT ) as in [BMS18, Corol-
lary 6.5., Proposition 6.7]. This functor has the effect of killing the I-torsion in the cohomology
of a complex.

The functor LηI commutes with truncations and in particular preserves the subcategories of
bounded complexes D≥0(OT ), D≤d(OT ), D[0,d](OT ).

Lemma 5.5.1. Let C be an object in D(OT ). Then
(1) Assume that C ∈ D≥0(OT ) and that H0(C) is I-torsion free. We have a natural map in

D(OT ):
a : LηI(C)→ C.

(2) Assume that C ∈ D≤d(OT ). We have a natural map in D(OT )

b : C⊗ I⊗d → LηI(C)

(3) Assume that C ∈ D[0,d](OT ) and that H0(C) is I-torsion free. The cofibers of b◦(a⊗I⊗d)
and a ◦ b are OT /I

⊗d-modules.

Proof. These claims are all part of [BMS18, Lemma 6.9]. �

Applying Lemma 5.5.1 to the ringed topos (Xét,O), the invertible ideal I = (ζp − 1), and the
objects Rν∗Ô+ and τ≤dRν∗Ô+, we obtain morphisms:

a : LηIRν∗Ô
+ → Rν∗Ô

+

a : LηIτ
≤dRν∗Ô

+ → τ≤dRν∗Ô
+

b : τ≤dRν∗Ô
+ ⊗ I⊗d → LηIRν∗Ô

+

Lemma 5.5.2. The object cof(a) is I2d-torsion.

Proof. Consider the diagram of exact triangles constructed from the octahedral axiom:

cof(b ◦ (ā⊗ I⊗d))
= //

��

cof(b ◦ (ā⊗ I⊗d)) //

��

0

��

cof(b) //

��

cof(āb) //

��

cof(ā)

=

��

I⊗d ⊗ cof(ā)[1] // N // cof(ā).

Here N is the cofiber of the map cof(b◦ (ā⊗I⊗d))→ cof(āb). Since cof(b◦ (ā⊗I⊗d)) and cof(āb)
are both Id-torsion, N is I2d-torsion.

By Lemma 5.5.3 below, the map cof(a)→ I⊗d ⊗ cof(a)[2] is 0, so that

N ∼=
(
I⊗d ⊗ cof(ā)[1]

)
⊕ cof(ā).

It follows that cof(ā) is I2d-torsion. �
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Lemma 5.5.3. Let a1, a2, a3 be morphisms in a triangulated category which fit into a diagram:

A
a1→ B

a2→ C
a3→ D.

Then the composition of the canonical maps

cof(a3)→ cof(a2)[1]→ cof(a1)[2]

is 0.

Proof. We have a commutative diagram of fiber sequences:

cof(a2a1) //

��

cof(a3a2a1) //

��

cof(a3) //

��

=

��

cof(a2a1)[1]

��

cof(a2) // cof(a3a2) // cof(a3) // cof(a2)[1]

It follows that the canonical map cof(a3) → cof(a2)[1] factors through cof(a2a1)[1], which is
exactly the fiber of the canonical map cof(a2)[1]→ cof(a1)[2]. Thus the composition cof(a3)→
cof(a1)[2] is zero. �

Lemma 5.5.4. The complexes cof(a) and cof(ā) are almost isomorphic. In particular cof(a) is
(ζp − 1)2d+1-torsion.

Proof. Let
t : τ≤dRν∗Ô

+ → Rν∗Ô
+

be the natural map. Consider the diagram of cofiber sequences:

LηIτ
≤dRν∗Ô

+ //

LηIt

��

τ≤dRν∗Ô
+ //

t

��

cof(ā)

��

LηIRν∗O
+ //

��

Rν∗O
+ //

��

cof(a)

��

cof(LηIt) // cof(t) // D.

We claim that t and LηIt are almost isomorphisms. We begin with t. It suffices to verify that
t is an almost isomorphism after evaluating the source and target complexes of sheaves on an
open. Given an open U → X′ét, (Rν∗O

+)(U) ∼= RΓ((ν)−1(U)proét,O
+) is subject to the con-

straints imposed by the discussion around [vK19, Equation 3.3.1], in which ∆ has cohomological
dimension d, so the cofiber of the map e is almost zero. Applied to our situation, this implies
that the cofiber of t is almost zero. A similar argument applying the source and target of LηIt
to an open allows us to apply [vK19, Theorem 3.9] to see that the cofiber of LηIt is almost zero.

Therefore cof(LηIt) and cof(t) are both almost zero. This implies that D is almost zero, and
this further implies that cof(ā) → cof(a) is an almost isomorphism. Since an almost zero sheaf
of complexes is I-torsion, we have that cof(a) is I2d+1-torsion. �

Since cof(a) is (ζp − 1)2d+1-torsion, we (rather crudely) conclude that it is p2d+1-torsion. It
follows that it is a module over Z/p2d+1Z. Since the functor of taking homotopy fixed points is
lax monoidal, cof(a)hΓK is also a module over Z/p2d+1Z and thus so are the cohomology groups
of cof(ahΓK ). We have proved:
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Lemma 5.5.5. For i ≥ 0 we have

Hi(cof(a)hΓK ) =

{
0, i = 0

p2d+1-torsion, i ≥ 1.

5.6. Tame descent. Theorem 5.3.4 gives control over the pro-étale cohomology of a rigid-
analytic space X/K which admits an affine semistable model over OK . We now pose the question
of whether this control may be obtained for the general case of a smooth rigid-analytic space
X/K. The trouble we encounter is that X/K does not necessarily have a semistable model;
it may be necessary to extend scalars. The best result we know along these lines is the main
theorem of [Har03], which states that Xét admits an open cover by rigid-analytic generic fibers
of semistable formal schemes defined over finite extensions L/K. If X is not quasi-compact then
there may not be a single L/K that suffices for this purpose, and then the constants appearing
in Theorem 5.3.4 could a priori accumulate.

In the special case that all the L/K are tamely ramified extensions (or, at least, if the wild
ramification of the L/K is bounded), then it becomes possible to get uniform control over the
pro-étale cohomology of X. We will see in the next section that this is the case for the open unit
ball over K.

We gather a few lemmas about descent through tame extensions. For a Galois extension of
local fields L/K with group G, let OL 〈G〉 denote the associative OL-algebra whose underlying
module is freely generated by symbols [g], and whose multiplication law is determined by the
relations [gh] = [g][h] and [g]α = g(α)[g] for α ∈ OL and g, h ∈ G. Let ModOL〈G〉 denote the
category of OL 〈G〉-modules. An object of this category is an OL-module A endowed with an
action of G which acts semilinearly over the action of G on OL; i.e., a descent datum along L/K.
Its module of fixed points AG is an OK-module.

Lemma 5.6.1. Let K be a local field of characteristic (0, p), and let L/K be a finite tame Galois
extension with group G. The functor A 7→ AG from OL 〈G〉-modules to OK-modules is exact. As
a result, if C ∈ D(OL 〈G〉) is a complex whose cohomology groups are all killed by pk for some
k ≥ 1, then the same is true for ChG ∈ D(OK).

Proof. Since a composition of exact functors is exact, we can reduce to the cases where L/K is
unramified or totally tamely ramified.

In the case where L/K is unramified, OL is an étale G-torsor over OK , and thus by étale
descent, the functor A 7→ AG is an equivalence of categories.

In the case where L/K is totally tamely ramified, exactness follows from the fact that the
order of G is a unit in OK . �

Lemma 5.6.2. Suppose X/K is a rigid-analytic space. Define βX as the composition:

O+(X)[ε]
unit→ RΓ(Xét,O

+)[ε]
νX→ RΓ(Xproét, Ô

+).

Assume there exists a finite tame Galois extension L/K such that XL is the generic fiber of an
affine semistable formal scheme X of dimension d over OL. Then the cohomology groups Hi(βX)
are all killed by a uniform power of p which only depends on K.

Proof. Let G = Gal(L/K). Theorem 5.3.4 applied to the affine semistable formal scheme X gives
a bound on the cofiber of the G-equivariant map

βXL
: O+(XL)[ε]→ RΓ(XL,proét, Ô

+).

Here we have used Lemma 5.2.3 to identify O(X) with O+(XL). Applying homotopy fixed points
under G is exact by Lemma 5.6.1, so the same bounds apply to the cofiber of βX . �
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We now pass to the non-affinoid case. To do this, we consider covers of a rigid-analytic space
by affinoids satisfying the hypotheses of Lemma 5.6.2. At this point we will start encountering
objects in D(Solid) which are limits of p-adic objects but which are no longer p-adic themselves.

Definition 5.6.3. Let X/K be a smooth rigid analytic space of dimension d. Let U := {Ui}i∈I
be an open cover in Xan. For a finite subset J ⊂ I, let UJ be the intersection of the {Ui}i∈J . We
say that U is tamely semistable if for every such J , there exists a finite Galois tame extension
LJ/K such that (UJ)LJ

admits an affine semistable formal model over OLJ
.

Such a cover appears when there is already a semistable model for X:

Lemma 5.6.4. Let X be a quasi-separated semistable formal scheme over OK with generic fiber
X. Let {Ui}i∈I be an affine open cover of X. Let U be the cover of X obtained by pulling this
cover back through the reduction map. Then U is a tamely semistable cover for X.

Proof. The quasi-separatedness assumption implies that for all finite non-empty J ⊂ I the open
subset UJ ⊂ X is affine. Let

red: X → X

be the reduction map. For each J we have UJ ∼= red−1(UJ). Since semistablity is an étale local
condition, we see that UJ is an affine semistable model for UJ . �

Definition 5.6.5. Let X/K be a rigid-analytic space. Let U be an affinoid open cover in Xan,
with the same notational conventions as in Definition 5.6.3. Define the condensed Čech complex
by

Č(U,O+
cond) := lim[n]∈∆

∏
f∈I[n]

O+
cond(Uim(f)).

In this expression:
• ∆ is the simplex category, with objects [n] = {0, 1, . . . , n} for n ≥ 0, and morphisms

order preserving maps,
• I [n] is the set of functions f : [n]→ I, and im(f) is the image of f , and
• the limit is computed in D(Cond(Ab)).

Thus, Č(U,O+
cond) is a condensed enhancement of the usual Čech complex Č(U,O+).

Remark 5.6.6. Since O+
cond (in contrast to Ocond) is not acyclic on affinoids, in general Č(U,O+

cond)

does not just compute the O+
cond-cohomology of X.

Lemma 5.6.7. Let X be a quasi-separated semistable formal scheme over OK with generic fiber
X. Let U be the affinoid open cover of X obtained by pulling back an affine open cover {Ui}i∈I
of X. Then RΓ(X,Ocond) is quasi-isomorphic to Č(U,O+

cond).

Proof. By Lemma 3.5.1, Ocond is acyclic on affine formal schemes. Therefore RΓ(X,Ocond) is
computed by Čech cohomology with respect to the affine cover {Ui}i∈I :

RΓ(X,Ocond) ∼= lim[n]∈∆

∏
f∈I[n]

Ocond(Uim(f)).

For each finite J ⊂ I we have an isomorphism of topological rings Lemma 5.2.3 O(UJ) ∼= O+(UJ).
Applying the functor A 7→ A from topological abelian groups to condensed abelian groups, we
find that RΓ(X,Ocond) is quasi-isomorphic to Č(U,O+

cond). �

The next theorem shows that if U is a tamely semistable cover of X, then the condensed Čech
complex associated to U is a good approximation for the pro-étale cohomology of X.
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Theorem 5.6.8. Let X/K be a smooth rigid analytic space of dimension d, and let U := {Ui}i∈I
be a tamely semistable cover of X. We have a natural map

αU : Č(U,O+
cond)[ε]→ RΓ(Xproét, Ô

+
cond).

The cohomology groups Hi(cof(αU)) are each killed by a power of p. If the dimension of the
nerve of U is finite, the same power of p kills Hi(cof(αU)) for all i.

Proof. For each finite non-empty set of indices J ⊂ I, we have a natural map

βJ : O+(UJ)[ε]→ RΓ(UJ,proét, Ô
+)

as in Lemma 5.6.2. By that lemma, there exists n ≥ 1 such that pn kills Hi(cof(βJ)) for all i, J .
We consider now the condensed enhancement of βJ . Note that UJ is affinoid, and as a

topological ring, O+(UJ) is p-adic, in the sense that O+(UJ) ∼= lim←−O+(UJ)/pn as a limit of
discrete groups. On the other hand, Lemma 3.7.1 states that RΓ(UJ,proét, Ô

+
cond) is p-adic as

well. Therefore we can apply the functor X 7→ lim←−X/p
n (where the limit is calculated in

D(Cond(Ab))) to βJ , we obtain a morphism in D(Cond(Ab)) which is functorial in J :

βJ,cond : O+
cond(UJ)[ε]→ RΓ(UJ,proét, Ô

+
cond).

TheHi(cof(βJ,cond)) are p-adic solid abelian groups killed by pn (which implies they are discrete).
Combining the βJ,cond together, we find a morphism αU as in the theorem. Its cofiber is

cof(αU) ∼= lim[n]∈∆

∏
f∈I[n]

cof(βim(f)).

Taking the associated cosimplicial limit spectral sequence

Es,q1 =
∏
f∈I[q]

Hs(cof(βim(f))) =⇒ Hs+q(cof(αU)),

we find that Hi(cof(αU)) is killed by pn(i+1). If the dimension of the nerve of the cover is δ, we
find that Hi(cof(αU)) is killed by pn(δ+1). �

Corollary 5.6.9. Let X be a quasi-separated semistable formal scheme over OK with generic
fiber X. There is a natural morphism in D(Cond):

αX : RΓ(X,Ocond)[ε]→ RΓ(Xproét, Ô
+
cond),

such that the cohomology groups of cof(αX) are p-power torsion.

Proof. This is immediate from Lemma 5.6.7 and Theorem 5.6.8. �

Applying Γ∗ to the morphism in Corollary 5.6.9 and inverting p gives the non-condensed
statement appearing in Theorem D.

6. Proof of Theorem B

Let us recall the main players in Theorem B: a prime number p, an integer n ≥ 1, the ring
of p-typical Witt vectors W = W (Fp), and the Lubin–Tate ring A ∼= W Ju1, . . . , un−1K, which
admits a continuous action of the Morava stabilizer group Gn. Proposition 2.5.1 states that the
inclusion W ↪→ A admits a continuous Gn-equivariant additive splitting, say with complement
Ac. Theorem B is the statement that the continuous cohomology H∗cts(Gn, Ac) is p-power torsion.

In Section 3.9 we explained how to reduce Theorem B to a statement (Theorem 3.9.3) control-
ling the pro-étale cohomology of the open ball and Drinfeld’s symmetric space. After a detour
on the integral cohomology of p-adic Lie groups, we examine these cases in turn. As a general
reference for p-adic Lie groups, we recommend Lazard’s treatment [Laz65] or [Sch11].
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6.1. Continuous cohomology of p-adic Lie groups with integral coefficients. Let G be a
p-adic Lie group. In Section 3.8 we reviewed Lazard’s isomorphism H∗cts(G,Qp) ∼= H∗(LieG,Qp),
where LieG is Lazard’s (rational) Lie algebra. For our purposes we will need the integral refine-
ment of this isomorphism described in [HKN11]. First we recall a definition from [DdSMS99].
Let U be a pro-p group. We say U is uniform if it satisfies the conditions:

(1) U is topologically finitely generated.
(2) For p odd (resp., p = 2), U/Up is abelian (resp., U/U4 is abelian). Here Un is the closure

of the subgroup of U generated by nth powers.
(3) Let U = U1 ⊃ U2 ⊃ · · · be the lower p-series. Then [Ui : Ui+1] is independent of i.
For a uniform pro-p group U , [DdSMS99, §8.2] defines the integral Lie algebra L(U) over Zp;

this is a lattice in LieU . The following is [HKN11, Theorem 3.3.3].

Theorem 6.1.1. Let U be a uniform pro-p group acting continuously on a finitely generated free
Zp-module M . Assume that the action map U → AutM factors through 1 + pEndM if p is odd
(resp., through 1 + 4 EndM if p = 2). Then L(U) acts on M , and there is an isomorphism of
graded Zp-modules:

H∗cts(U,M) ∼= H∗(L(U),M)

If G is a Qp-analytic group acting continuously on M , then G contains a uniform pro-p
subgroup U whose action onM satisfies the hypothesis of Theorem 6.1.1. Therefore the question
of computing continuous cohomology of G with integral coefficients can be reduced to a question
about the integral Lie algebra L(G).

Lemma 6.1.2. Let G be either of the groups GLn(Zp) or O×D.
(1) Let G act trivially on Zp. Then

Hi
cts(G,Zp) ∼= Z⊕rip ⊕ Si,

where ri is the dimension of the degree i part of ΛQ(x1, x3, . . . , x2n−1), and where Si is
annihilated by a uniform power of p (that is, the power does not depend on i).

(2) Let C be a complex of solid Zp-modules admitting an action of G. Assume that Hi(C) = 0
for all i < 0 and that H∗(C) is annihilated by a uniform power of p. Then H∗(ChG) is
also annihilated by a uniform power of p.

Proof. In each case, G is the group of units of a Zp-algebra A such that U = 1+p2A is a uniform
pro-p subgroup of G, so we are in the situation of Theorem 6.1.1.

For part (1): Theorem 6.1.1 gives an isomorphism H∗cts(U,Zp) ∼= H∗(L(U),Zp). After tensor-
ing with Qp, we have

H∗(L(U),Zp)⊗Zp
Qp ∼= H∗(LieU,Qp) ∼= ΛQp

(x1, x3, . . . , x2n−1).

Since each H∗(L(U),Zp) is finitely generated over Zp, as can be seen from the Chevalley–
Eilenberg complex computing Lie algebra cohomology, we may write

Hi
cts(U,Zp) ∼= Hi(L(U),Zp) ∼= Zrip ⊕ Si,

where Si is finite. Since the cohomology is 0 for i > n2, there is a uniform power of p which
annihilates Si for all i.

To extend this statement from U to G, we use the existence of the restriction and corestriction
maps between H∗cts(G,Zp) and H∗cts(U,Zp); their composition is multiplication by #G/U .

For part (2): Consider the spectral sequence

Hi
cts(U,H

j(C)) =⇒ Hi+j(ChU ).
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Since U has cohomological dimension n2, the left side is nonzero only when 0 ≤ i ≤ n2. Therefore
if pr annihilates Hi(C) for all i, then prn

2

annihilates Hi(ChU ) for all i. Once again, the
restriction and corestriction maps can be used to extend the result from U to G. �

6.2. Pro-étale cohomology of the open ball. Let K be a local field of characteristic (0, p).
For an integer d ≥ 1, recall that we had defined the d-dimensional rigid-analytic open ball over
K:

B◦,d = (SpaOKJT1, . . . , TdK) \ {|p| = 0}
The ball B◦,d is not quasi-compact. It is exhausted by affinoid (closed) balls of increasing radius:

B◦,d = lim−→
r<1

Bdr , (6.2.1)

where r runs over real numbers in |p|Q+ , and for each r = |p|m/n with m,n relatively prime
positive integers, Bdr is the rational subset defined by the inequality |T |n ≤ |p|m.

The goal of this section is to control RΓ(B◦,dproét, Ô
+). The idea is to apply Theorem 5.6.8 to

the cover U given by a collection of affinoid balls Bdr which cover B◦,d. A convenient choice of
radii is r` = |p|1/`, where ` runs over prime numbers 6= p. The closed ball Bdr` admits a smooth
formal model after passage from K to the tamely ramified extension

L` = K(p1/`).

Indeed, Bdr` is the rigid-analytic generic fiber of the smooth formal scheme Bd
r`
, where

Bd
r`

= Spf OL`

〈
T1

p1/`
, . . . ,

Td
p1/`

〉
.

Therefore the cover U is tamely semistable.
The solid Čech complex Č(U,O+

cond) is quasi-isomorphic to R lim←−`H
0(Bdr` ,O

+
cond), which could

only have an H0 and an H1. The H0 is

lim←−H
0(Bdr` ,O

+
cond) = OKJT1, . . . , TdK,

where the latter must be considered as the solid abelian group associated to the topological ring
OKJT1, . . . , TdK (with its (p, T1, . . . , Td)-adic topology). We claim there is no H1. In order to
prove this, we begin with a formal lemma.

Lemma 6.2.2. If Ai is a cofiltered diagram of discrete abelian groups satisfying the Mittag-
Leffler condition and S is a profinite set, then the diagram of abelian groups Ccts(S,Ai) satisfies
the Mittag-Leffler condition as well.

Proof. This follows from the fact that for a map of discrete sets f : A → B and a profinite set
S, we have

Im [Ccts(S,A)→ Ccts(S,B)] = Ccts(S, Im(f)).

Indeed, the functions involved here are all locally constant, which reduces us to the obvious case
where S is finite. �

Lemma 6.2.3. Let K be a local field of characteristic (0, p) with uniformizer $. Let j ∈ N and
let 0 < r < 1 and set M = d 1+j

log|$|(r)
e. Then for every 1 > s ≥ r

1
j+1 and j′ ≥ j the image of the

map
H0(Bds ,O

+)/$j′ → H0(Bdr ,O
+)/$j ,

is the OK/$
j-submodule spanned by the T i for multi-indices i with |i| < M .
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Proof. Denote by V ⊂ H0(Bdr ,O
+)/$j the OK/$

j-submodule spanned by T i for |i| < M . Let
b =

∑
i biT

i ∈ H0(Bds ,O
+) and define two elements in H0(Bds ,O

+) by

b′ =
∑
|i|<M

biT
i and b′′ =

∑
|i|≥M

biT
i.

We have b = b′ + b′′. It is enough show that
(1) the image of b′ in H0(Bdr ,O

+)/$j belongs to V ;
(2) and the image of b′′ in H0(Bdr ,O

+)/$j is zero.
Thus it is enough to show

(1) |bi| ≤ 1 for |i| < M ;
(2) and | bi$j |r|i| ≤ 1 for |i| ≥M .

Since the value group of K is isomorphic to |$|Z, Condition (1) is equivalent to |bi| < 1
|$| for

|i| < M . Now since b ∈ H0(Bds ,O
+), we have for all i that |bi| ≤ s−|i| ≤ r−

|i|
j+1 . Thus we get

|bi| ≤ r
−(M−1)

j+1

for |i| < M and

| bi
$j
|r|i| = |$|−j |bi|r|i| ≤ |$|−jr

j|i|
j+1 ≤ |$|−jr

jM
j+1

for |i| ≥M . It is thus enough to show

r
−(M−1)

j+1 <
1

|$|
and |$|−jr

jM
j+1 ≤ 1.

Rearranging these two inequalities, we obtain the following condition:

M ≥ j + 1

log|$|(r)
> M − 1,

which is satisfied for for M = d 1+j
log|$|(r)

e, as needed. �

Theorem 6.2.4. There is a morphism in D(Solid):

αBd,◦ : OKJT1, . . . , TdK[ε]→ RΓ(Bd,◦proét, Ô
+
cond),

such that for all i ≥ 0, Hi(cof(αBd,◦)) is killed by a single power of p.

Proof. We apply Theorem 5.6.8 to the tamely semistable cover U = {Bdr`}. The condensed
Čech complex Č(U,O+

cond) is quasi-isomorphic to R lim←−`H
0(Bdr` ,O

+
cond). By Lemma 6.2.3 and

Lemma 6.2.2, the N2-diagram H0(Bdr` ,O
+
cond)/(pj)(S) satisfies the Mittag-Leffler condition for

each profinite set S. We then compute:

R lim←−̀H
0(Bdr` ,O

+
cond) ∼= R lim←−̀R lim←−

j

H0(Bdr` ,O
+
cond)/pj

∼= R lim←−
`,j

H0(Bdr` ,O
+
cond)/pj

∼= lim←−
`,j

H0(Bdr` ,O
+
cond)/pj

∼= lim←−̀H
0(Bdr` ,O

+
cond)

∼= OKJT1, . . . , TdK.

The first and forth isomorphisms follow from the derived p-completeness of H0(Bdr` ,O
+
cond). The

third isomorphism is a consequence of the Mittag-Leffler condition. �
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Corollary 6.2.5. Let W = W (Fp), let K = W [1/p], and let LTK be Lubin–Tate space in height
n, with A = H0(LTK ,O

+) ∼= OKJu1, . . . , un−1K the Lubin–Tate ring. We have an isomorphism
of graded K-vector space objects in D(Solid):

H∗(RΓ(LTK,proét, Ô
+)hO

×
D )⊗W K ∼= ΛK(x1, x3, . . . , x2n−1)[ε]⊕ (AhO

×
D ⊗W K)[ε].

Proof. LTK is a rigid-analytic open ball, so Theorem 6.2.4 applies. After taking homotopy fixed
points under O×D, we find a morphism

α
hO×D
LTK

: AhO
×
D [ε]→ RΓ(LTK,proét, Ô

+
cond)hO

×
D

By Lemma 6.1.2(2), the cohomology groups of cof(α
hO×D
LTK

) ∼= cof(αLTK
)hO

×
D are all p-power tor-

sion. After inverting p, we arrive at an isomorphism of K-vector space objects in D(Solid):

AhO
×
D ⊗W K[ε] ∼= RΓ(LTK,proét, Ô

+
cond)hO

×
D ⊗W K.

Now we apply the decomposition A = W ⊕ Ac from Proposition 2.5.1. By Lemma 3.8.1 (after
extending scalars to K), we have WhO×D ⊗W K ∼= KhO×D is an exterior algebra over K. �

6.3. The pro-étale cohomology of Drinfeld’s symmetric space. Let H be Drinfeld’s sym-
metric space of dimension n − 1. Then H admits a semistable formal model H/Zp. For a
construction of H, see [GK05a, §6]. The formal scheme H/Zp admits an action of GLn(Qp)
which is compatible with the isomorphism HQp

∼= H.
Our goal is to control the pro-étale cohomology of H. Key to that calculation is the following

acyclicity result:

Theorem 6.3.1. Let K/Qp be a local field, and let HOK
be the base change of H to Spf OK . We

have a GLn(Zp)-equivariant isomorphism in D(Solid):

RΓ(HOK
,Ocond) ∼= OK .

(Here OK with its p-adic topology is considered as a solid complex.)

Remark 6.3.2. The non-condensed version of the theorem (over Zp) is a special case of a result
of Grosse-Klonne [GK05b]; for the sake of being self-contained we offer a proof below. The
result in [GK05b] also computes the cohomology of each of the sheaves Ωjlog on H in terms of
certain lattices in Steinberg representations of PGLd+1(Qp). This would allow us to control the
Ô+-cohomology of Hd

proét,C . From this we could ultimately compute the continuous cohomology
Hi

cts(O
1
D, A)[1/p], where O1

D ⊂ O×D is the subgroup of elements of reduced norm 1. We do not
pursue these computations here.

Proof of Theorem 6.3.1. Let κ be the residue field of K, and let s = Specκ. Let Hs denote
the special fiber of HOK

. Since RΓ(HOK
,Ocond) is p-adically complete and its H0 is torsion-free

(since HOK
is semistable over Spf OK , it is also flat), it suffices to show that RΓ(Hs,Ocond) ∼= κ.

We need the following facts about Hs, and in particular its relation to the Bruhat–Tits building
BT for PGLn(Qp) (see [GK05a, §6]):

(1) BT is the simplicial complex whose q-simplices BTq are the homothety classes of flags
of Zp-lattices in Qnp :

L0 ( L1 ( · · · ( Lq ( p−1L0.

In particular BT is (n− 1)-dimensional.
(2) BT can be expressed as an increasing union of finite contractible subcomplexes.
(3) There is a bijection σ 7→ Zσ between the vertices BT0 of BT and irreducible components

of Hs.
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(4) A collection of vertices σ in BT0 are the vertices of a simplex in BT if and only if the
Zσ have nontrivial intersection. In that case, the Zσ meet transversely.

(5) For each q-simplex τ , let Zτ be the intersection of Zσ over all vertices σ of τ . Then Zτ is
a rational projective variety. More precisely, it is the result of a sequence of blow-ups of
(n−1−q)-dimensional projective space over κ, performed along nonsingular subvarieties.

For τ ∈ BTq, we let τ0 be its set of vertices, and we let Uτ be the open subset of ∪σ∈τ0Zσ
consisting of points not contained in Zσ′ for any σ′ 6∈ τ . Then the Uτ are a collection of (generally
singular) affine varieties which is closed under intersection.

The Uτ for τ ∈ BTn−1 cover Hs, so RΓ(Hs,Ocond) is computed by the condensed Čech complex

lim[q]∈∆

∏
f : [q]→BTn−1

O(Uf ), (6.3.3)

where Uf = ∩i∈[q]Uf(i). Each O(Uf ) is taken to be discrete, and the limit is computed in
D(Solid).

For q > 0 and τ ∈ BTq, the affine variety Uτ is the union of irreducible components Zσ ∩ Uτ
(for σ a vertex of τ) which meet transversely. Each Zσ ∩Uτ is an affine open in a rational variety
Zσ, and so it is isomorphic to an open subset of (n−1)-dimensional affine space. Therefore there
is an isomorphism of Uτ onto an open subset of SpecB, where

B = k[x1, . . . , xn]/(x1x2 · · ·xq),
which carries Zσ ∩ Uτ into SpecB/(xi) for the corresponding 1 ≤ i ≤ q. Thus, the map B →
O(Uτ ) is flat and we have O(Zσ ∩ Uτ ) ' O(Uτ )/(xi).

The resolution of Uτ by the disjoint union of the Zσ ∩ Uτ gives a quasi-isomorphism:

O(Uτ ) ∼= lim[r]∈∆

∏
σ∈BTr

O(Zσ ∩ Uτ ). (6.3.4)

This follows from the standard observation that the complex of B-modules

B →
⊕

1≤i≤q

B/(xi)→
⊕

1≤i<j≤q

B/(xi, xj)→ · · ·

is exact; base-changing along the flat map B → O(Uτ ) gives the isomorphism in (6.3.4).
Each Uf appearing in (6.3.3) equals Uτ for τ = ∩i∈[q]f(i). Substituting (6.3.4) into (6.3.3)

and rearranging the order of limits shows that RΓ(Hs,Ocond) is quasi-isomorphic to

lim[r]∈∆

∏
σ∈BTr

lim[q]∈∆

∏
f : [q]→BTn−1

O(Zσ ∩ Uf ). (6.3.5)

For a given σ ∈ BTq, the projective variety Zσ admits a cover by affine varieties Zσ ∩ Uτ ,
where τ runs through BTn−1. Therefore the inner limit in (6.3.5) computes RΓ(Zσ,O), and we
find:

RΓ(Hs,Ocond) ∼= lim[r]∈∆

∏
σ∈BTr

RΓ(Zσ,O)

We are left with the task of computing the cohomology RΓ(Zσ,O) of the nonsingular projective
variety Zσ. Property (5) above states that Zσ is constructed by a sequence of blow-ups of
projective space along nonsingular subvarieties. For any projective space P over κ we have
RΓ(P,O) ∼= κ. We now use the general fact [Hir64, §7, Corollary 2] that if f : X ′ → X is a blow-
up of a nonsingular variety X along a nonsingular subvariety, then Rf∗OX′ ∼= OX as complexes,
so RΓ(Zσ,O) ∼= κ as well.

Therefore
RΓ(Hs,Ocond) ∼= lim[r]∈∆

∏
σ∈BTr

κ
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is quasi-isomorphic to the (condensed!) κ-cohomology of BT itself. Since BT is exhausted by
finite contractible subcomplexes BTi ⊂ BT, its cohomology is lim←−i κ

∼= κ. �

Theorem 6.3.6. There is a GLn(Zp)-equivariant morphism in D(Solid):

αHK
: OK [ε]→ RΓ(HK,proét, Ô

+
cond)

such that the Hi(cof(α)) are killed by a uniform power of p for any i.

Proof. Combine Corollary 5.6.9 with Theorem 6.3.1. �

Corollary 6.3.7. We have an isomorphism of graded K-vector spaces in D(Solid):

H∗(RΓ(HK,proét, Ô
+)hGLn(Zp))⊗OK

K ∼= ΛK(y1, y3, . . . , y2n−1)[ε]

Proof. After taking homotopy fixed points under GLn(Zp) in Theorem 6.3.6, we find a morphism

α
hGLn(Zp)
H : O

hGLn(Zp)
K [ε]→ RΓ(Hproét, Ô

+
cond)hGLn(Zp).

By Lemma 6.1.2, the cohomology groups of cof(α
hGLn(Zp)
H ) ∼= cof(αH)hGLn(Zp) are all p-power

torsion. After inverting p, we arrive at an isomorphism of K-vector space objects in D(Solid):

KhO×D [ε] ∼= RΓ(HK,proét, Ô
+
cond)hGLn(Zp) ⊗OK

K

By Lemma 3.8.1, the continuous cohomology of GLn(Zp) is the stated exterior algebra. �

6.4. Conclusion of the proof. We now complete the proofs of Theorem B and of Theorem A.

Theorem 6.4.1. For every i, the groups Hi
cts(O

×
D, A

c) and Hi
cts(Gn, Ac) are p-power torsion.

Proof. We leverage the isomorphism between the two towers, as in Theorem 3.9.1. We have a
diagram of adic spaces over SpaK, where K = W (Fp)[1/p]:

X
GLn(Zp)

}}

O×D

!!

LTK HK

Here HK is the base change of H to K. The diagram induces an isomorphism in D(Solid):

RΓ(LTK,proét, Ô
+
cond)hO

×
D ∼= RΓ(HK,proét, Ô

+
cond)hGLn(Zp) ∼= RΓ(HK,proét, Ô

+
cond)hGLn(Zp).

After inverting p, and combining Corollary 6.2.5 and Corollary 6.3.7 and ignoring the con-
densed structure, we find an isomorphism of graded K-vector spaces:

ΛK(x1, x3, . . . , x2n−1)[ε]⊕ (H∗cts(O
×
D, A

c)⊗W K) ∼= ΛK(y1, y3, . . . , y2n−1)[ε]

By comparing dimensions degree-wise on either side, we conclude that H∗cts(O
×
D, A

c)⊗W K = 0.
The claim extends from O×D to Gn, using the Hochschild–Serre spectral sequence combined

with the fact that the cohomological dimension of Gn/O×D ∼= Ẑ is 1. �

Proof of Theorem A. This is now immediate from Theorem B and Proposition 2.6.3. �
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