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Abstract. For a finite abelian group A, we determine the Balmer spectrum of Spω
A, the compact

objects in genuine A-spectra. This generalizes the case A = Z/pZ due to Balmer and Sanders
[BS17], by establishing (a corrected version of) their logp-conjecture for abelian groups. We also

work out the consequences for the chromatic type of fixed-points and establish a generalization

of Kuhn’s blue-shift theorem for Tate-constructions [Kuh04].
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1. Introduction

Let (T ,⊗,1) be an essentially small ⊗-triangulated category [Ver96, Nee01]. To classify thick
⊗-ideals of T , Balmer introduced a topological space Spc(T ) associated to T , called the Balmer
spectrum of T [Bal10b]. The points of Spc(T ) are the prime thick ⊗-ideals, i.e., those proper thick
⊗-ideals I ( T such that if a⊗ b ∈ I, then a ∈ I or b ∈ I. A basis for the open subsets of Spc(T )
is given by the complements of subsets of the form Supp(a) = {P ∈ Spc(T ) | a 6∈ P}, for some
a ∈ T . When T is rigid1, and it will be in the examples below, then Balmer’s classification theorem
[Bal05, Introduction] identifies the collection of thick ⊗-ideals of T with the Thomason subsets of
Spc(T ), i.e., subsets given by unions of closed subsets with quasi-compact complement.

In [BS17], Balmer and Sanders study, for a finite group G, the Balmer spectrum Spc(SpωG)
of the (homotopy category of the) ∞-category SpωG of compact genuine G-spectra [LMS86]. We
recommend the introduction of [BS17] for a thorough overview of this problem. This continues
unpublished work of Strickland and the work of Joachimi [Joa15]. The results depend on the thick
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1The consequence of this technical assumption is that every thick ⊗-ideal of T is radical, see [Bal05, Rem. 4.3
and Prop. 4.4].
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subcategory theorem of Hopkins and Smith [HS98, Rav92], which we will now recall (see [Bal10a,
Sec. 9] for more details)2. For each prime p ∈ Z, there is a descending chain of prime thick ⊗-ideals
in the ∞-category Spω of finite spectra

C1
p ⊇ . . . ⊇ Cnp := {X ∈ Spω | K(n−1)∗X = 0} ⊇ . . . ⊇ C∞p :=

⋂
n≥0

Cnp = {X ∈ Spω | K(∞)∗(X) = 0}.

Here, K(n) denotes the nth Morava K-theory at the prime p with the usual conventions that
K(0) = HQ (independently of p) and K(∞) = HFp. Finally, Spc(Spω) is obtained by taking the
union over all p of these sets of prime ideals and identifying each of the prime ideals in {C1

p}p prime

with the single prime consisting of torsion finite spectra.
Now we return to SpωG. For each subgroup H of G we have an exact symmetric monoidal

geometric fixed point functor

ΦH : SpωG −→ Spω

which induces a continuous map of Balmer spectra ΦH
∗

: Spc(Spω) → Spc(SpωG). Balmer and

Sanders show that these maps are jointly surjective and that ΦH1
∗
(p) = ΦH2

∗
(q) if and only if

H1 is conjugate to H2 and p = q in Spc(Spω) [BS17, Thm. 4.9 and Thm. 4.11]. This determines
Spc(SpωG) as a set. To complete the identification of the topological space Spc(SpωG), and hence
obtain the classification of the thick ⊗-ideals, one needs to further identify all inclusions between
the prime ideals

{P(H, q, n) := (ΦH)−1(Cnq ) | H ⊆ G, 1 ≤ n ≤ ∞, q prime}3.

Balmer and Sanders reduce this problem to the special case that G is a p-group, for some prime p,
and q = p [BS17, Prop. 6.11]. They also give an important result in this direction [BS17, Prop. 8.1,
Cor. 8.4]: Suppose that G is a p-group and K ⊆ H ⊆ G are subgroups with |H/K| = ps. Then, for
each n > s,

P(K, p, n) ⊆ P(H, p, n− s) ⊆ · · · ⊆ P(H, p, 1).

Moreover, if s 6= 0 then P(K, p, n) 6⊆ P(H, p, n) for all n <∞. This only leaves open the following
question, cf. [BS17, Rem. 8.6].

Question 1.1. In the above situation, what is the minimal 0 ≤ i ≤ s such that P(K, p, n) ⊆
P(H, p, n− i) ?

Answering this question is equivalent to completing the identification of the topological space
Spc(SpωG). To this end Balmer and Sanders conjecture [BS17, logp-Conjecture 8.7] that their bound
is optimal, namely the minimal such i is s. In Corollary 1.3 we will identify this i precisely when
G = A is an abelian group. This will prove the Balmer–Sanders conjecture when A = (Z/pZ)×n is
an elementary abelian p-group, disprove it for all other abelian p-groups, and provide the necessary
correction to complete the identification of Spc(SpωA) for all abelian groups A. We will discuss why
we limit ourselves to the abelian case in Remark 1.5 below.

To make Question 1.1 more concrete, recall that Hopkins and Smith define for a finite p-local
spectrum Y ∈ C0

p := Spω(p), type(Y ) := max{n | Y ∈ Cnp } ∈ [0, . . . ,∞] to be the type of Y .
Using the reduction to the p-local case and unwinding the definitions, one sees that Question 1.1

2Note that when the tensor unit 1 ∈ T generates T as a thick subcategory, then every thick subcategory of T is
also a thick ⊗-ideal. So there is no distinction between thick ⊗-ideals and thick subcategories of Spω .

3That knowing these inclusions is in fact equivalent to knowing the topology is clear from the second sentence of
[BS17, Cor. 8.19]
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is concerned with determining how the type of ΦH(X) varies with respect to a choice of subgroup
H ⊆ G, for a finite p-local G-spectrum X; see Remark 4.5 for a simple example along these lines.

We now fix a prime p, a finite abelian group A (not necessarily a p-group), and we let Σ denote
the set of subgroups of A. To every X ∈ SpωA,(p) we associate the function fX : Σ −→ [0, 1, . . . ,∞],

defined by fX(A′) := type(ΦA
′
(X)). This function encodes which prime thick ⊗-ideals of SpωA,(p)

X belongs to and, as we vary X, the potential inclusions. Finally, let us denote by rkp(B) :=
dimFp(B ⊗Z Fp) the p-rank of a finite abelian group B.

Theorem 1.2. For a function f : Σ→ [0, 1, . . . ,∞], the following are equivalent:

i) There is some X ∈ SpωA,(p) such that f = fX .

ii) For every chain of subgroups A′ ⊆ A′′ ⊆ A such that A′′/A′ is a p-group, we have

f(A′) ≤ f(A′′) + rkp(A
′′/A′).

This answers Question 1.1 for abelian groups, as follows.

Corollary 1.3. When G is an abelian group, K ⊆ H ⊆ G are subgroups, p is a prime and
1 ≤ n <∞, then the minimal i such that P(K, p, n) ⊆ P(H, p, n− i) is i = rkp(H/K).

In case A = Z/pZ, Theorem 1.2 is due to Balmer and Sanders [BS17, Sec. 7]. To prove it, they
make use of Kuhn’s seminal blue-shift theorem for Tate cohomology [Kuh04, Prop. 1.11]. We will
prove a generalization of Kuhn’s theorem, which also is of interest in its own right.

To state this result we must first fix some notation. For a spectrum X ∈ Sp, let ϕA(X) :=
ΦA(X) ∈ Sp be the A-geometric fixed points of the Borel A-equivariant spectrum X associated to

X4. Finally, let Lfn−1 denote the Bousfield localization functor on Spω which makes precisely those
objects in Cnp contractible. Our blue-shift result is as follows:

Theorem 1.4. For every abelian group A and integer n ≥ 1 we have

ker
(
ϕA(Lfn−1(S0))⊗ (−) : C0

p −→ C0
p

)
= Cmax(n−rkp(A),0)

p .

This paper is organized as follows: In Section 2 we prove our main results, postponing the proofs
of two key technical results to the following two sections. The first one is Theorem 3.5 in Section 3
which determines the blue-shift of generalized Tate-constructions on Lubin–Tate spectra. It will
be used to establish the implication i) ⇒ ii) in Theorem 1.2. The second one is Theorem 4.1 in
Section 4, and is a guide through previous work of Arone, Lesh, Dwyer, and Mahowald which
provides examples of finite A-complexes with very subtle properties. This is the key result needed
to show the implication ii) ⇒ i) in Theorem 1.2.

Remark 1.5. To understand why we have restricted ourselves to the abelian case, we will briefly
describe the limitations of our methods.

The first critical limitation is that we make use of the fact that all subgroups of an abelian group
G are normal. Under this assumption, we can assume K is the trivial subgroup and H = G is the
ambient group in Question 1.1 (already in the case of D8, we can not perform this reduction and
our methods do not precisely identify the topology).

Our upper bound on the i appearing in Question 1.1 is then established by identifying precisely
the blue-shift behavior of the G-geometric fixed point construction on Borel equivariant Morava
E-theory (see the proof of Theorem 2.1). It was already shown in [MNN15, Prop. 5.26] that for G

4For comparison with [Kuh04], observe that ϕA(X) = ΦA(ẼA ∧ F (EA+, i∗X)) are the geometric fixed points of
the Tate-construction of the A-spectrum i∗X, where i∗X is the inflation of X.
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non-abelian these geometric fixed points are always contractible and we do not obtain an improved
bound on i in this case.

Our lower bound on i is obtained by constructing an explicit finite (Z/pZ)×n complex with the
desired properties and pulling back the action along a map G→ (Z/pZ)×n. So the lower bound we
can establish is determined by the rank of a maximal elementary abelian quotient of G, while our
upper bound can only be improved by considering geometric fixed points of abelian groups. This
ends up being sufficient to identify the Balmer spectrum in the case G = Q8, but that discussion
would take us too far afield.
We are convinced that the determination of the Balmer spectrum for any interesting class of finite
non-abelian groups requires substantial new ideas. In fact, we cannot even propose a conjectured
answer.

Acknowledgments. Markus Hausmann thanks Gregory Arone for helpful conversations on the
subject of this paper. We thank Paul Balmer and Beren Sanders for pointing out inaccuracies in a
preliminary draft of this paper. This work first began while Tobias Barthel, Thomas Nikolaus, and
Nathaniel Stapleton were in Bonn and they thank the MPIM for its hospitality.

2. Proofs of the main results

We first state two key technical results, the proofs of which are postponed to Section 3 and
Section 4, respectively.

Theorem 2.1. Assume p is a prime, A is a finite abelian p-group and X ∈ SpωA,(p). Then

type(ΦA(X)) ≥ type(Φ{0}(X))− rkp(A).

Theorem 2.2. (Arone, Dwyer, Lesh, Mahowald)
Let p be a prime, n ≥ 1 and ∆ := (Z/pZ)×n the corresponding elementary abelian p-group. Then,
there is a p-local finite ∆-equivariant spectrum F (n) ∈ Spω∆,(p) satisfying the following conditions:

i) The geometric fixed points Φ∆(F (n)) have type 0.
ii) The underlying non-equivariant spectrum of F (n), i.e., Φ{0}(F (n)), has type n.

Fix a finite abelian group A and a prime p (where A is not required to be a p-group). Now
we turn to determining the Balmer spectrum of SpωA,(p), the localization at p of Spω. For every

subgroup A′ ⊆ A and 1 ≤ n ≤ ∞, we have a prime ideal

P(A′, n) := P(A′, p, n) := Φ(A′)−1
(Cnp ) = {X ∈ SpωA,(p) | type(ΦA

′
(X)) ≥ n} ∈ Spc(SpωA,(p))

5.

Writing Σ for the set of subgroups of A, even more is true: The map

Σ× [1, . . . ,∞] −→ Spc(SpωA,(p)) , (A′, n) 7→ P(A′, n)

is bijective [BS17, Thms. 4.9 and 4.14]. Determining the topology on Spc(SpωA,(p)) is more subtle,

and is equivalent to deciding for which pairs (A′, n), (A′′,m) ∈ Σ× [1, . . . ,∞] we have an inclusion
P(A′, n) ⊆ P(A′′,m), cf. [BS17, Cor. 8.19].

Our result is as follows.

Theorem 2.3. Given subgroups A′, A′′ ⊆ A and 1 ≤ n,m ≤ ∞, the following are equivalent:

i) We have P(A′, n) ⊆ P(A′′,m).
ii) We have A′ ⊆ A′′, the quotient A′′/A′ is a p-group, and n ≥ m+ rkp(A

′′/A′).

5Since we are now working p-locally, we will omit the second entry in the notation P(A′, q, n) from the introduction,
since q will always be p.
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We will now explain how to use results of [BS17] to reduce the proof of Theorem 2.3 to the
special case that A′ ⊆ A′′ equals {0} ⊆ A: By [BS17, Prop. 6.9], the inclusion in Theorem 2.3, i)
is possible only if A′ ⊆ A′′ and A′′/A′ is a (possibly trivial) p-group, so we assume this from now
on. In the following, we will write PA(?, ?) = P(?, ?) when it seems necessary to identify that the
ambient group is A. We can then state the first reduction step:

Proposition 2.4. For subgroups A′ ⊆ A′′ ⊆ A and 1 ≤ m,n ≤ ∞, the following are equivalent:

i) We have PA(A′, n) ⊆ PA(A′′,m).
ii) We have PA′′(A′, n) ⊆ PA′′(A′′,m).

Proof. Restriction induces a continuous map of spectra

Res : Spc(SpωA′′,(p)) −→ Spc(SpωA,(p))

which, for all subgroups B ⊆ A′′ and 1 ≤ k ≤ ∞, satisfies Res(PA′′(B, k)) = PA(B, k). So ii)
implies i).

The reverse implication is more subtle and uses the observation [BS17, Sec. 2.1, (F)] that Res
satisfies a Going-Up theorem. Following the notation there, choose P ′ := PA(A′, n) and Q :=

PA′′(A′′,m). We then have Res(Q) = PA(A′′,m) ⊇ P ′, i.e., P ′ ∈ {Res(Q)}, and the Going-Up

theorem implies that there is some Q′ ∈ {Q} such that Res(Q′) = P ′. Since for subgroups of
abelian groups, Res is injective [BS17, Cor. 4.4 and Thm. 4.14] and we have Res(PA′′(A′, n)) =

PA(A′, n) = P ′, we conclude that Q′ = PA′′(A′, n), and the relation Q′ ∈ {Q} then means that ii)
holds. �

Replacing A by A′′, we have thus reduced to understanding possible inclusions PA(A′, n) ⊆
PA(A,m). We reduce this problem further with the following proposition.

Proposition 2.5. For a subgroup A′ ⊆ A and 1 ≤ m,n ≤ ∞, the following are equivalent:

i) We have PA(A′, n) ⊆ PA(A,m).
ii) We have PA/A′({0}, n) ⊆ PA/A′(A/A′,m).

Proof. We use [BS17, §2.1, (H)]. The adjoint functors

ΦA
′
: SpA ↔ SpA/A′ : Inf

satisfy ΦA
′ ◦ Inf ' id. Hence the induced maps on spectra exhibit Spc(SpωA/A′,(p)) as a retractive

subspace of Spc(SpωA,(p)). Furthermore, by [BS17, Prop. 4.7], we have Spc(ΦA
′
)(PA/A′({0}, n)) =

PA(A′, n) and Spc(ΦA
′
)(PA/A′(A/A′,m)) = PA(A,m), which concludes the proof. �

To summarize, for the proof of Theorem 2.3 we can assume A′ ⊆ A′′ with A′′/A′ a p-group, by the
discussion immediately following Theorem 2.3, we can then assume that A = A′′ by Proposition 2.4,
and that A′ = 0 by Proposition 2.5. This now reduces the proof of Theorem 2.3 to the following
special case.

Theorem 2.6. Assume A is a finite abelian p-group and 1 ≤ m,n ≤ ∞. Then the following are
equivalent:

i) We have P({0}, n) ⊆ P(A,m).
ii) We have n ≥ m+ rkp(A).
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Proof. Let k := rkp(A). We first assume that m,n < ∞. To show that i) implies ii), we will
prove the contrapositive. In other words, we assume that m > n − k, and then we will show that
P({0}, n) 6⊆ P(A,m). To do this, we consider two cases.

First assume that n ≥ k. Since m ≥ n − k + 1 ≥ 1, we have P(A,m) ⊆ P(A,n − k + 1),
and it suffices to show that P({0}, n) 6⊆ P(A,n − k + 1), i.e., that there is some X ∈ SpωA,(p)
with type(Φ{0}(X)) ≥ n and type(ΦA(X)) ≤ n − k. Our example will achieve equality in both
cases. To start, use Theorem 2.2 to choose some Y ∈ Spω(Z/pZ)×n,(p) with type(Φ{0}(Y )) = n

and type(Φ(Z/pZ)×n(Y )) = 0. We choose a subgroup (Z/pZ)×k ⊆ (Z/pZ)×n, and consider Z :=

Res
(Z/pZ)×n

(Z/pZ)×k
(Y ) ∈ Spω(Z/pZ)×k,(p). It satisfies type(Φ{0}(Z)) = n, and the type of Φ(Z/pZ)×n(Y ) '

Φ(Z/pZ)×n/(Z/pZ)×k
(

Φ(Z/pZ)×k(Z)
)

is zero. Since the individual fixed-point functors can drop height

at most by the rank of the group involved by Theorem 2.1, we conclude that type(Φ(Z/pZ)×k(Z)) =
n− k. Denoting by X the inflation of Z along A→ A/pA ' (Z/pZ)×k, it is now clear that X has
the desired properties.

In the case n < k, it suffices to check that P({0}, k) 6⊆ P(A,m), i.e., that there exits X ∈ SpωA,(p)
with type(Φ{0}(X)) ≥ k and type(ΦA(X)) ≤ m−1. The existence of such a spectrum follows again
from Theorem 2.2, since k is the p-rank of A, and hence we can even find some X ∈ SpωA,(p) with

type(Φ(0)(X)) = k and type(ΦA(X))) = 0.
To see that ii) implies i), we need to see that if X ∈ SpωA,(p) satisfies type(Φ{0}(X)) ≥ n ≥ m+k,

then type(ΦA(X)) ≥ m. This is precisely the content of Theorem 2.1.
The remaining cases with ∞ ∈ {m,n} reduce to showing that P({0},∞) ⊆ P(A,∞) which

follows from the above as in [BS17, Cor. 7.2]. �

Proof of Theorem 1.2. To see that i) implies ii), take subgroups A′ ⊆ A′′ ⊆ A such that A′′/A′ is
a p-group, say of p-rank k, and also fix some X ∈ SpωA,(p). We wish to show that

f(A′′) = type(ΦA
′′
(X)) ≥ type(ΦA

′
(X))− k (= f(A′)− k).

Restricting to A′′ we can assume that A = A′′, and using that in this case ΦA = ΦA/A
′ ◦ ΦA

′
, we

can further reduce to A′ = {0}. In this case, the desired conclusion is Theorem 2.1.
To see that ii) implies i), consider the following subset

Spc(SpωA,(p)) ⊇ Z := {P(A′, n) | ∀A′ ⊆ A : n > f(A′)}

(where, in the above expression, we use the convention ∞ ≯ ∞). This subset is closed by our
assumption ii) on the function f and Theorem 2.3. Indeed, if P(A′, n) ∈ Z and P(B, l) ⊆ P(A′, n)

(i.e., P(B, l) ∈ P(A′, n)), then

l ≥ n+ rkp(A
′/B) > f(A′) + rkp(A

′/B) ≥ f(B),

hence P(B, l) ∈ Z. The open complement of Z is quasi-compact by [BS17, Prop. 10.1]. By [Bal05,
Prop. 2.14], there is some X ∈ SpωA,(p) with supp(X) = Z. It is clear that this X has the desired
properties. �

Proof of Theorem 1.4. Fix an integer n ≥ 1, set k := rkp(A), and recall we wish to prove that

ker
(
ϕA(Lfn−1(S0))⊗ (−) : C0

p −→ C0
p

)
= Cmax(n−k,0)

p .

To show the inclusion ⊆, we can assume that n − k ≥ 1, for otherwise the claim is trivial. Take

X ∈ C0
p with ϕA(Lfn−1(S0)) ⊗X ' ∗. Since there is a ring map Lfn−1S

0 −→ E for a Lubin–Tate
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theory E at p of height n − 1, we see that ϕA(E) ⊗X ' ∗ as well. Since the chromatic height of
ϕA(E) is n− 1− k (Remark 3.6, ii)), we have X ∈ Cn−kp by Lemma 3.7, iii).

To see the inclusion ⊇, by the thick subcategory theorem it is sufficient to find a single example

of some X ∈ Cmax(n−k,0)
p such that ϕA(Lfn−1(S0))⊗X ' ∗. As in the proof of Theorem 2.6, we see

that there is some Y ∈ SpωA,(p) such that type(ΦA(Y )) = max(n−k, 0) and such that type(Φ{0}Y ) =

max(n, k). We then have Lfn−1(S0)⊗ Y ' ∗, and hence Lfn−1(S0)⊗ Y ' Lfn−1(S0)⊗ Y ' ∗, which

implies:

∗ ' ϕA(Lfn−1(S0))⊗ ΦA(Y ),

and X := ΦA(Y ) is as desired. �

3. Blue-shift for Lubin–Tate spectra

The aim of this subsection is to compute the blue-shift on Lubin–Tate spectra of F-geometric
fixed points for general families F in abelian groups, see Theorem 3.5 below. There are many
similar and overlapping results in the literature, and while we will not try to be exhaustive here,
we mention at least the following sources: [GS96] consider the Tate cohomology of vn-periodic
complex oriented spectra, [HS96] consider the Bousfield classes of the Tate cohomology of the
Ln-localizations of finite spectra, [Str12] considers elementary abelian p-groups and an alternative
Tate construction, [AMS98] consider the Z/pZ-Tate construction on Johnson–Wilson spectra, and
[HKR00] provide crucial results on the Lubin–Tate cohomology of finite groups which we will use
below.

Fix a prime p, an integer n ≥ 1, and a Lubin–Tate spectrum E of height n at the prime p,
see [Rez97, Lur10] for general background. We denote by Ln := LE the corresponding Bousfield
localization functor, cf. [Rav92, Ch. 7]. This localization only depends on n (and the implicit prime
p), and not on our choice of Lubin–Tate spectrum E.

Definition 3.1. The chromatic height of an E∞-E-algebra E → R 6' 0 is

ht(R) := min{t ≥ 0 | R '−→ LtR}.

Remark 3.2. Since E ' LnE, we have 0 ≤ ht(R) ≤ n. By analyzing chromatic fracture squares (cf.
[GHMR05, Eq. (0.1)], one sees that ht(R) = t is equivalent to K(i)∗R = 0 for i > t and K(t)∗R 6= 0.
By [Hah16, Thm. 1.1], the former condition follows from only knowing K(t + 1)∗R = 0, so we see
that ht(R) = max{t ≥ 0 | K(t)∗R 6= 0}.

Fix a finite abelian p-group A.

Definition 3.3.

i) For a proper family F of subgroups of A, we call

corkp(F) := min{rkp(A′) | A′ ⊆ A such that A′ 6∈ F}

the p-corank of F .

ii) For a family F of subgroups of A, there are classifying A-spaces EF and ẼF , the latter
of which is pointed, which are characterized, up to an essentially unique equivariant weak
equivalence, by their fixed point data:

(3.4) EFK '

{
∗ if K ∈ F
∅ otherwise

ẼFK '

{
∗ if K ∈ F
S0 otherwise.
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iii) In ii), when F = {{0}} is the family only containing the trivial subgroup, it is customary

to write EA := EF and ẼA := ẼF .
iv) For a spectrum X ∈ Sp, let X ∈ SpA denote the Borel completion of X, that is the unique

A-spectrum which is Borel complete and whose underlying spectrum is X with trivial A-
action, cf. [MNN17, Sec. 6.3].

v) For a family F of subgroups of A, and X ∈ SpA, we call

ΦF (X) :=
(
ẼF ⊗X

)A
the F-geometric fixed points of X. As special cases, Φ{0}(X) = tA(X) is the classical Tate
construction as in [GM95c], and for the family P of proper subgroups of A, ΦA(X) :=
ΦP(X) are the (usual) A-geometric fixed points.

The following is the main result of this section.

Theorem 3.5. Let p be a prime, A a finite abelian p-group, n ≥ 1 an integer, E a Lubin–Tate
spectrum at p of height n and F a family of subgroups of A. Then ΦF (E) = 0 if and only if
corkp(F) ≥ n+ 1. Otherwise, the chromatic height of the E∞-E-algebra ΦF (E) is given by

ht(ΦF (E)) = ht(E)− corkp(F) = n− corkp(F).

Remark 3.6.

i) In the language of [MNN15], the vanishing criterion in Theorem 3.5 for ΦF (E) is equivalent

to the determination of the derived defect base of E: Since ẼF ⊗ E is a ring spectrum,
its A-fixed points, i.e., ΦF (E), vanish if and only if it is itself equivariantly contractible,

i.e., ẼF ⊗ E = 0. By definition, this is equivalent to F containing the derived defect base
of E which consists of those subgroups of A of p-rank at most n by [MNN15, Prop. 5.36].
Theorem 3.5 extends that result by further identifying how the chromatic height varies for
all families of subgroups of A.

ii) For the family P of proper subgroups of a non-trivial finite abelian group A, the p-corank
corkp(P) = rkp(A) is the p-rank of A, hence the chromatic height of the geometric fixed
points ΦA(E) = ΦP(E) of E drops by the p-rank of A. After taking into account [GM95b,
Prop. 3.20], this case was implicitly studied in [Sta13, p. 1015].

iii) If F is taken to be the family of subgroups of p-rank at most m < rkp(A), then the chromatic
height drops by corkp(F) = m+ 1. In particular, every height drop between 0 and rkp(A)
can be realized by a suitable F-geometric fixed points functor.

The proof of Theorem 3.5 will be through a series of lemmas. We first record a folklore result,
Lemma 3.7 below, relating the height of E∞-E-algebras with the geometry of Lubin–Tate space (cf.
[DFHH14, Ch. 12, Lem. 8.1(2)]). To formulate it, we need to fix some notation first: Choose a map
of E1-algebras MU(p) → E and denote by vi ∈ π2(pi−1)(E) (i ≥ 0, v0 := p) the images of the Araki-
generators of the same name under this map. We can arrange that vn is a unit which admits a root

vn = u1−pn
n (hence un is of degree −2), and we then have ui := viu

pi−1
n ∈ π0(E) (0 ≤ i ≤ n − 1).

The deformation theory of formal groups implies that π∗(E) = W (k)[[u1, . . . , un−1]][u±1
n ] and that

the u0, . . . , un−1 determine the height filtration of the formal part of the universal p-divisible group
G over Spec(π0(E)). For every 0 ≤ t ≤ n − 1, we denote by It+1 := (u0, . . . ut) ⊆ π0(E) the ideal
which cuts out the locus of height at least t+ 1. We also set In+1 := (1).

Recall ([Lur11, Def. 8.5, Thm. 8.42]) that a non-connective spectral DM-stack can be thought of
as a pair X = (X,OX) consisting of a classical Deligne-Mumford stack (X,OX) ([LMB00]) and a
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hyper-complete sheaf OX of E∞-rings on the étale site of X such that π0(OX) ' OX and such that
the OX -module πi(OX) is quasi-coherent for all i ∈ Z. Every E∞-ring R canonically determines a
non-connective spectral DM-stack Spét(R) = (Spec(π0(R)),OSpét(R)) (cf. [Lur17, §1.4.2])6.

Lemma 3.7. Assume that ∅ 6= X = (X,OX)
f−→ Spét(E) is a non-connective spectral DM-stack,

and 0 ≤ t ≤ n is an integer. Then the following are equivalent:

i) The sheaf of E∞-rings OX is Lt-local, i.e., for every étale open U → X, the E∞-ring OX(U)
is Lt-local.

ii) The map of underlying spaces [Lur17, §1.5.4] determined by f , namely |f | : |X| → |Spét(E)| =
Spec(π0(E)) factors through the open subscheme Spec(π0(E)) \ V (It+1) (i.e., the locus of
height at most t).

iii) For every finite p-local spectrum F of type greater than t, we have OX ⊗ F ' 0.

In particular, the chromatic height of the global sections Γ(X,OX) is given by

(3.8) ht(Γ(X,OX)) = max{ht((GΩ)for) | Ω→ X a geometric point},

where ht((GΩ)for) denotes the height of the formal part of the base-change of G to Ω (along the
composition Ω→ X → Spec(π0(E)).

Proof. We show the equivalence between i) and iii) first: If R is an Lt-local ring spectrum and F
is a finite p-local spectrum of type ` > t, then R ⊗ F ' Lt(R) ⊗ F ' R ⊗ Lt(F ) ' 0 since Lt is
smashing. Applying this with R = OX(U) shows that i) implies iii). Conversely, iii) implies that for
every ` > t, we have R⊗ T (`) ' 0, and thus 0 = K(`)∗(R⊗ T (`)) ' K(`)∗(R)⊗K(`)∗ K(`)∗(T (`)).
Since K(`)∗(T (`)) 6= 0 and K(`)∗ is a (graded) field, we deduce that K(`)∗(R) = 0. Applying this

to the relevant chromatic fracture squares, we see that Lk(R)
'→ Lt(R) for all k ≥ t. Since OX is a

sheaf of Ln-local ring spectra, this implies R
'→ Ln(R)

'→ Lt(R), and hence that i) holds.
To establish the equivalence between the first two conditions, we first observe that both i) and

ii) are étale local on X: For i), this is just the sheaf condition for OX together with the fact that
any limit of Lt-local spectra is Lt-local. For ii), this follows more directly because the underlying
map of any étale cover is surjective.

We can thus assume that X = Spét(R) for some E∞-E-algebra E → R 6' 0. To settle this
special case, we will freely use the notation and results of [GM95a]. Specifically, we have Lt(R) '
R[I−1

t+1] ' E[I−1
t+1]⊗E R, and there is a fiber sequence of E-modules

K(It+1) −→ E −→ E[I−1
t+1].

This shows that i) is equivalent to K(It+1) ⊗E R ' 0. Direct inspection of the construction of
K(It+1) shows that K(It+1) ⊗E R ' K(It+1 · π∗R), and that K(It+1 · π∗R) ' 0 is equivalent to
It+1 · π∗R = π∗R, which is equivalent to ii).

Finally, the formula for ht(Γ(X,OX)) in Equation (3.8) follows because, for every 0 ≤ t ≤ n,
condition ii) can be checked on geometric points. �

Remark 3.9. In the above proof we used the well-known implication T (`)∗(X) = 0⇒ K(`)∗(X) =
0, valid for any spectrum X. The reverse implication is the telescope conjecture, now believed by
many to be false. One can, however, establish the reverse implication for up-to-homotopy ring
spectra, using the nilpotence theorem of [HS98].

6The construction of OSpét(R) will partially be recalled during the proof of Lemma 3.16 below.
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Recall that we fixed a finite abelian p-group A, a family F of its subgroups and a Lubin–Tate
spectrum E of height n at p. To apply Lemma 3.7 to determine the chromatic height of the E∞-E-
algebra ΦF (E), we review the modular interpretation of the E∞-E-algebra EBA+ . We will show,
in particular, that all ΦF (E) occur as suitable local sections of its structure sheaf. So we study
in some detail the affine spectral scheme Spét(EBA+) corresponding to the E∞-ring EBA+ . The
first step is to recall the determination of the (classical) commutative ring π0(EBA+) in algebro-
geometric terms. The commutative ring π0(E) carries a one-dimensional formal group F which is a
universal deformation of its special fiber. The system G := (F [pk])k≥0 of p-power torsion constitutes
a p-divisible group over π0(E)7. We denote by A∗ the Pontryagin dual of A. Choosing N so large
that pNA = 0, we consider the functor Hom(A∗,G[pN ]) on π0(E)-algebras valued in abelian groups,
which sends every R to the group of homomorphisms from A∗ to G[pN ](R).

Proposition 3.10. There is an isomorphism of finite flat group schemes of rank |A|n over π0(E)

Spec(π0(EBA+)) ' Hom(A∗,G[pN ]).

Proof. The isomorphism is [HKR00, Prop 5.12]. The computation of the rank is immediate, cf.
[Str97, Sec.7]. �

Remark 3.11.

i) The above can be rephrased by saying that Spét(EBA+) is an even periodic enhancement
of the composition

Hom(A∗,G[pN ]) −→ Spec(π0(E)) −→MFG

in the sense of [MM15, Def. 2.5].
ii) For cyclic A, Proposition 3.10 admits an interesting generalization from the case of BA =

K(A, 1) to considering K(A,m) for arbitrary m ≥ 1 instead, see [HL13, Thm. 3.4.1].

We next consider the principal open subschemes of Hom(A∗,G[pN ]) determined by Euler classes.
We fix a coordinate t : BS1

+ −→ E for the formal group F = Gfor, and for every character ρ : A −→
S1 refer to the composition

e(ρ) :=
(
BA+

Bρ+−−−→ BS1
+

t−→ E
)
∈ π0(EBA+)

as the Euler class of ρ. The principal open subscheme determined by ρ is

U(e(ρ)) := Spec(π0(EBA+)[e(ρ)−1]) ⊆ Spec(π0(EBA+)) ' Hom(A∗,G[pN ]).

Observe that there is a closed immersion

Hom(ker(ρ)∗,G[pN ]) ↪→ Hom(A∗,G[pN ])

determined by pullback along the surjective restriction of characters A∗ → ker(ρ)∗. The following
Proposition 3.12 is a basic observation. After translating between affine schemes and algebra, the
proof is just as in [GM95b, Prop. 3.20]. We denote by OHom(A∗,G[pN ]) the structure sheaf of the

affine derived scheme Spét(π0(EBA+)), taking the result of Proposition 3.10 as an identification in
the following.

Proposition 3.12. In the above situation, we have

7More is true: This is part of an equivalence between p-divisible commutative formal Lie groups over π0(E) and
connected p-divisible groups over π0(E) [Tat67, Prop. 1].
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i) an equality

U(e(ρ)) = Hom(A∗,G[pN ]) \Hom(ker(ρ)∗,G[pN ])

of open subschemes of Hom(A∗,G[pN ]) and
ii) an identification of EBA+ -algebras

Γ(U(e(ρ)),OHom(A∗,G[pN ])) ' Φ[≤ker(ρ)](E),

where [≤ ker(ρ)] := {A′ ⊆ A | A′ ⊆ ker(ρ)} denotes the family of subgroups of A on which
ρ vanishes.

Proof. To prove i), we observe there is an obvious cartesian square

Hom(ker(ρ)∗,G[pN ])

��

//� � // Hom(A∗,G[pN ])

��
{0} �
� // Hom(im(ρ)∗,G[pN ]).

The zero section of Hom(im(ρ)∗,G[pN ]) is given by the vanishing of the Euler class e(im(ρ) ⊆
S1) (because im(ρ) is cyclic of p-power order), and the naturally of e(−) implies that the closed
immersion Hom(ker(ρ)∗,G[pN ]) ↪→ Hom(A∗,G[pN ]) is given by the vanishing of e(ρ).

For the proof of ii), we will need a bit more information about e(ρ). We will abuse notation
and let ρ denote the corresponding complex representation. Applying one point compactification
to the inclusion 0 ↪→ ρ, we obtain a map of based A-spaces e(ρ)′ : S0 → Sρ. Smashing e(ρ)′ with
E, taking A fixed points, and using our complex orientation, we obtain the EBA+ -module map
EBA+ → EBA+ corresponding to the map e(ρ) above [MNN15, §5.1].

Now we do have Γ(U(e(ρ)),OHom(A∗,G[pN ])) ' EBA+ [e(ρ)−1] by the construction of the structure

sheaf OHom(A∗,G[pN ]). To see the claim, we will use the equivalence Ẽ[≤ ker(ρ)] ' colimnS
nρ (which

can be checked using Definition 3.3, ii)) with transition maps given by multiplication with e(ρ)′.
Using this, we see

Φ[≤ker(ρ)](E) =
(
Ẽ[≤ ker(ρ)]⊗ E

)A
' colimn

(
EA

·e(ρ)−−−→ EA
·e(ρ)−−−→ · · ·

)
' EA[e(ρ)−1]

' EBA+ [e(ρ)−1]

' Γ(U(e(ρ)),OHom(A∗,G[pN ])). �

We want to generalize Proposition 3.12, ii) by finding an open subscheme (typically non-principal)
of Hom(A∗,G[pN ]) over which the sections are ΦF (E) for a given family F . We also want this open
subscheme to have a modular interpretation, as in Proposition 3.12, i) above, which will ultimately
allow for the height computation of Theorem 3.5.

We begin by observing that for every family F we have

(3.13) F =
⋃
A′∈F

[≤ A′] =
⋃
A′∈F

⋂
ρ∈(A/A′)∗

[≤ ker(ρ)].
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The first equality in (3.13) is trivial and the second one follows from duality of finite abelian groups.
Here, we commit a mild abuse of notation by identifying some ρ ∈ (A/A′)∗ with the composition

A→ A/A′
ρ−→ S1.

The decomposition (3.13) suggests to consider the following open subscheme of Hom(A∗,G[pN ]):

(3.14) U(F) :=
⋂
A′∈F

⋃
ρ∈(A/A′)∗

U(e(ρ)).

By Proposition 3.12, i), this equals

(3.15) U(F) = Hom(A∗,G[pN ]) \

 ⋃
A′∈F

⋂
ρ∈(A/A′)∗

Hom(ker(ρ)∗,G[pN ])

 .

This last equation gives us the desired modular interpretation of U(F), and we can also identify
the sections over it, as follows.

Lemma 3.16. In the above situation, we have

Γ(U(F),OHom(A∗,G[pN ])) ' ΦF (E)

as algebras over EBA+ = Γ(Hom(A∗,G[pN ]),OHom(A∗,G[pN ])).

Proof. For every open U ⊆ X := Hom(A∗,G[pN ]) and e ∈ π0(EBA+) = π0 (Γ(X,OX)) we have a
cartesian square

Γ(U ∪ U(e),OX) //

��

Γ(U,OX)

��
Γ(U(e),OX) // Γ(U ∩ U(e),OX) ' Γ(U,OX)[e−1].

Given any family F and any character ρ : A −→ S1, we also have a cartesian square of genuine
G-spectra

Σ∞
(
Ẽ (F ∩ [≤ ker(ρ)])

)
//

��

Σ∞
(
ẼF

)
��

Σ∞
(
Ẽ ([≤ ker(ρ)])

)
// Σ∞

(
Ẽ (F ∪ [≤ ker(ρ)])

)
' Σ∞

(
ẼF

)
⊗ Σ∞

(
Ẽ ([≤ ker(ρ)])

)
.

Assume now that U and F are such that Γ(U,OX) ' ΦF (E) as EBA+ -algebras. Comparison
of the above two cartesian squares (with e := e(ρ)) and using Proposition 3.12, ii) then implies
that Γ(U ∪ U(e(ρ)),OX) ' ΦF∩[≤ker(ρ)](E) as EBA+ -algebras. Applying this inductively with
Proposition 3.12, ii) as a starting point, we see that for every A′ ∈ F , we have

(3.17) Γ

 ⋃
ρ∈(A/A′)∗

U(e(ρ)),OX

 ' Φ
⋂
ρ[≤ker(ρ)](E)

(3.13)
' Φ[≤A′](E).

Finally, for any two opens U, V ⊆ X, we have

(3.18) Γ(U ∩ V,OX) ' Γ(U,OX)⊗Γ(X,OX) Γ(V,OX),
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and conclude

Γ(U(F),OX)
(3.14)
' Γ

 ⋂
A′∈F

⋃
ρ∈(A/A′)∗

U(e(ρ)),OX


(3.18)
'

⊗
A′∈F

Γ(
⋃

ρ∈(A/A′)∗

U(e(ρ)),OX)

(3.17)
'

⊗
A′∈F

Φ[≤A′](E)

(∗)
' Φ

⋃
A′∈F [≤A′](E)

(3.13)
= ΦF (E).

For the equivalence (∗) we used ẼF1 ⊗ ẼF2 ' Ẽ(F1 ∪ F2), which is again easily inferred from
Definition 3.3, ii). �

Now we have assembled everything to prove the main result of this subsection.

Proof of Theorem 3.5. Taking the identification of Lemma 3.16 and applying Equation (3.8) with
X := (U(F),OHom(A∗,G[pN ]) |U(F)), we find that

ht(ΦF (E)) = max{ht((GΩ)for) | Ω→ U(F) a geometric point}.

If Ω is any geometric point of Spec(π0(E)), then we have G[pN ](Ω) '
(
Z/pNZ

)n−ht((GΩ)for)
, so

using (3.15), we obtain the following cumbersome, but elementary, description of the sought for

ht(ΦF (E)): It is the largest t ≥ 0 such that there is a homomorphism ϕ : A∗ →
(
Z/pNZ

)n−t
such

that for all A′ ∈ F there is a character ρ ∈ (A/A′)∗ such that ker(A∗ → ker(ρ)∗) 6⊆ ker(ϕ).
Observe that

{ker(A∗ → ker(ρ)∗) = im(ρ)∗ | ρ ∈ (A/A′)∗} = {C ⊆ (A/A′)∗ ⊆ A∗ cyclic} .

So the condition on ϕ is that it does not vanish on (A/A′)∗, for every A′ ∈ F . We now determine
which C ⊆ A∗ can occur as the kernels of such ϕ. Since pNA = 0, for any subgroup C ⊆ A∗ there

will be an inclusion A∗/C ↪→
(
Z/pNZ

)n−t
if and only if rkp(A

∗/C) ≤ n− t.
Now a maximal t satisfying the above is determined by:

n− t = min {rkp(A∗/C) | C ⊆ A∗ s.t. ∀A′ ∈ F , (A/A′)∗ 6⊆ C} .

Using that for any finite abelian p-group B we have rkp(B) = rkp(B
∗), that A′ 7→ (A/A′)∗ and

C 7→ (A∗/C)∗ ⊆ A∗∗ = A are mutually inverse inclusion reversing bijections between subgroups of
A and A∗, and that F is a family, this becomes

n− t = min
{

rkp(C̃) | C̃ ⊆ A, C̃ 6∈ F
}

= corkp(F),

as claimed. �

We finally use Theorem 3.5 to prove Theorem 2.1, which shows that the formation of geometric
fixed points can lower the type of a finite complex at most by the p-rank of the group acting. We
repeat the statement for convenience
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Corollary 3.19. Assume A is a finite abelian p-group and X ∈ SpωA,(p). Then type(ΦA(X)) ≥
type(Φ{0}(X))− rkp(A).

Proof. Let k := rkp(A), and we can assume that n := type(Φ{0}(X)) ≥ k + 1 for otherwise our

assertion is vacuously true. Our assumption is that K(n − 1)∗(Φ
{0}(X)) = 0; in the case n = ∞,

i.e., Φ{0}(X) is contractible, the following argument is applied for every Morava K-theory.
Denote by E a Lubin–Tate spectrum at p of height n − 1. Since type(Φ{0}(X)) > n − 1

and any map into a K(n − 1)-local spectrum factors through the K(n − 1)-localization, we have
E∗(Φ{0}(X)) = 0. Then we have more generally E∗(EA′+ ⊗A′ X) = 0 for all subgroups A′ ⊆ A by
considering the collapsing homotopy fixed point spectral sequence. In other words, the Borel spec-

trum F (X,E) is equivariantly contractible because we have π∗

(
F (X,E)A

′
)

= E−∗(EA′+⊗A′X) =

0. Equivalently, all of the geometric fixed points of this spectrum are contractible. We conclude
that

0 ' ΦA(F (X,E)) ' D(ΦA(X))⊗ ΦA(E).

The second of these equivalences uses the finiteness of X and the fact that ΦA is a symmetric
monoidal functor. We know that the chromatic height of ΦA(E) is n − k − 1 by Remark 3.6, ii),
so its p-local finite acyclics are precisely the complexes of type at least n − k, cf. Lemma 3.7, iii).
This means that type(ΦA(X)) =type(D(ΦA(X))) ≥ n− k (also in case n =∞)8. �

4. The complexes of Arone and Lesh

The aim of this subsection is to use work of Arone, Dwyer, Lesh, and Mahowald to give a proof
of Theorem 2.2, the statement of which we repeat for convenience:

Theorem 4.1. (Arone, Dwyer, Lesh, Mahowald)
Let p be a prime, n ≥ 1 and ∆ := (Z/pZ)×n the corresponding elementary abelian p-group. Then,
there is a p-local finite ∆-equivariant spectrum F (n) ∈ Spω∆,(p) satisfying the following conditions:

i) The geometric fixed points Φ∆(F (n)) have type 0.
ii) The underlying non-equivariant spectrum of F (n), i.e., Φ{0}(F (n)), has type n.

This result is of central importance to the entire paper. We remark that the complexes F (n) are
closely related to the complexes constructed by Mitchell in [Mit85], which were the first examples of
finite (non-equivariant) complexes of arbitrary type. The exact relation between these two families
of complexes is worked out in [Aro98, Sec. 2].

The construction of F (n) uses equivariant homotopy theory for compact Lie groups, and we
refer the reader to [MNN15] for a rapid review of this. We first describe the groups involved. Fix
an integer m ≥ 1 and let U(m) denote the unitary group of rank m. Embed the permutation
group Σm ⊆ U(m) as the subgroup of permutation matrices. Fix the (non-standard) embedding
U(m− 1) ⊆ U(m) corresponding to the embedding Cm−1 ⊆ Cm as the orthogonal complement of
the diagonal. Note that then Σm ⊆ U(m− 1) ⊆ U(m).

Now consider the case m = pn and embed ∆ ⊆ Σpn using the regular representation of ∆ on
its underlying set. Let Ppn denote the (geometric realization of the) poset of non-trivial proper
partitions of a set with pn elements. The equivariant Spanier–Whitehead dual D(P�pn) of its unre-
duced suspension is canonically an object of SpωΣpn , i.e., a finite genuine Σpn -spectrum, and we

8Poincaré duality for K(n)-cohomology makes it clear that the types of a finite complex and its dual agree.



THE BALMER SPECTRUM OF GENUINE A-SPECTRA 15

consider its twist D(P�pn) ⊗ Sρ by the representation sphere of the reduced regular representa-

tion ρ of Σpn . We denote by Ind
U(pn−1)
Σpn

: SpΣpn
→ SpU(pn−1) the induction functor and by

Res
U(pn−1)
∆ : SpU(pn−1) → Sp∆ the restriction functor. Note that both induction and restriction

preserve finite spectra. We can thus finally define

F (n) :=
(

Res
U(pn−1)
∆

(
Ind

U(pn−1)
Σpn

(D(P�pn)⊗ Sρ)
))

(p)
∈ Spω∆,(p).

The geometric fixed points of F (n) will be analyzed through the following result, which is essen-
tially contained in [AL17, §5].

Proposition 4.2. We have

Σ∞
(
U(1)

×(pn−1)
+

)
⊗
(
Φ∆(−)

) '−→ Φ∆ ◦ Ind
U(pn−1)
Σpn

(−)

as functors SpΣpn
−→ Sp.

Proof. We will first establish the following unstable refinement of our assertion. Denote by C :=
CU(pn−1)(∆) ' U(1)p

n−1 the centralizer of ∆ in U(pn − 1), and note that ∆ ⊆ C. For every
Σpn -space X, we define a map between fixed point spaces

(4.3) ϕX : C/∆×X∆ −→
(
U(pn − 1)×Σpn X

)∆
, ϕX(c∆, x) := [c, x],

which we claim is an equivalence, functorial in X.
It is immediate that (4.3) is well-defined and functorial in X. Its injectivity results from an easy

computation, using that ∆ ⊆ Σpn is its own centralizer: If [c, x] = [c′, x′], then there exists some
σ ∈ Σpn such that

(c, x) = (c′σ−1, σx′) ∈ U(pn − 1)×X.
This implies cσ = c′ ∈ C and hence cσdσ−1c−1 = d for all d ∈ ∆. From this we see that
σ ∈ Σpn ∩ C = ∆ and hence c = c′σ−1 for some σ−1 ∈ ∆ and x = σx′ = x′, as desired.

To see the surjectivity of (4.3), recall the general computation of the fixed points of an induced
space(

U(pn − 1)×Σpn X
)∆

=
{

[u, x] | u ∈ U(pn − 1) such that u−1∆u ⊆ Σpn and x ∈ Xu−1∆u
}
.

Denoting by N := NU(pn−1)(∆; Σpn) :=
{
u ∈ U(pn − 1) | u−1∆u ⊆ Σpn

}
, Arone and Lesh show

in [AL17, §5], that the obvious inclusion C · Σpn ⊆ N is in fact an equality. Now, given [u, x] ∈(
U(pn − 1)×Σpn X

)∆
, we can write u = cσ with c ∈ C, σ ∈ Σpn and x ∈ Xu−1∆u = Xσ−1∆σ. We

conclude that x = σ−1y for some y ∈ X∆, and then compute

ϕX(c∆, y) = [c, y] = [cσ, σ−1y] = [u, x],

hence ϕX is indeed surjective.
To identify C/∆, we observe that ∆→ C ' U(1)×(pn−1) maps to each of the pn− 1 components

by each of the non-trivial irreducible representations of ∆. The quotient of each of these actions is

U(1)/∆ = U(1)/Im(∆) = U(1)/(Z/pZ) ' U(1).

We can thus identify the quotient U(1)×(pn−1)/∆×(pn−1) ' U(1)×(pn−1). To identify the quotient
C/∆ ' U(1)×(pn−1)/∆ by the diagonal copy of ∆ we consider the induced quotient fiber sequence:

∆×(pn−1)/∆→ U(1)×(pn−1)/∆→ U(1)×(pn−1)/∆×(pn−1)(' U(1)×(pn−1)).

This forces U(1)×(pn−1)/∆ to be a K(Z×(pn−1), 1) ' U(1)×(pn−1).
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In order to pass to the stable setting, we observe that the above equivalence (4.3) has an obvious
analogue for pointed Σpn-spaces which implies a natural stable equivalence for pointed Σpn -spaces
X of the form
(4.4)

Σ∞ (C/∆+)⊗Σ∞(X∆)
'−→ Σ∞

((
U(pn − 1)+ ∧Σpn X

)∆) ' Φ∆
(
Σ∞(U(pn − 1)+)⊗Σpn Σ∞(X)

)
.

Now by the equivariant Freudenthal suspension theorem [May96, §IX] and a standard induction
argument over cells, every finite Σpn-spectrum Y is equivalent to S−V ⊗ Σ∞(X) where Σ∞(X) is
the equivariant suspension spectrum of a finite pointed Σpn -space X and S−V is the equivariant
Spanier–Whitehead dual of a representation sphere of Σpn . Applying the equivalence of (4.4) to
such an X we see that:

Σ∞(C/∆+)⊗ Φ∆(Y ) ' S−V
∆

⊗ Σ∞(C/∆+)⊗ Σ∞(X∆)

'−→ S−V
∆

⊗ Φ∆
(
Σ∞(U(pn − 1)+)⊗Σpn Σ∞(X)

)
' Φ∆(Ind

U(pn−1)
Σpn

(Y )).

Finally, every Σpn-spectrum is a filtered colimit of finite Σpn -spectra and hence we obtain the

desired equivalence for any Σpn -spectrum, taking into account that C/∆ ' U(1)×(pn−1). �

Proof of Theorem 2.2. Recall that we defined

F (n) :=
(

Res
U(pn−1)
∆

(
Ind

U(pn−1)
Σpn

(D(P�pn)⊗ Sρ)
))

(p)
∈ Spω∆,(p),

and now need to check properties i) and ii) for F (n).
By Proposition 4.2, we see that

Φ∆(F (n)) ' U(1)
×(pn−1)
+ ⊗ Φ∆(D(P�pn)⊗ Sρ)(p).

Observe that Φ∆(−) is symmetric monoidal, and in particular commutes over Spanier–Whitehead
duals. Since P∆

pn is the Tits-building of Gln(Fp) (cf. [ADL16, Lem. 10.1]) which is a wedge of

p
n(n−1)

2 spheres of dimension n−2 if n ≥ 2 (for n = 1, the Tits-building is empty and its unreduced
suspension is S0), and Φ∆(Sρ) ' S0, we see that Φ∆(F (n)) has type zero.

Showing property ii) requires much harder previous work of Arone and Mahowald. Using that

Φ{0} ◦ Ind
U(pn−1)
Σpn

' U(pn− 1)+⊗hΣpn (−), we see that the underlying spectrum of F (n) is given as

Φ{0}(F (n)) ' U(pn − 1)+ ⊗hΣpn (D(P�pn)⊗ Sρ)(p).

This is easily recognized to be, up to a shift, one of the spectra figuring in [Aro98] (where Arone
uses Kn to denote the suspension of P�n). In [Aro98, Thm. 0.4], building on work of Arone and
Mahowald [AM99], it is shown that H∗(Φ{0}(F (n)),Fp) is finitely generated, free and non-zero over
the subalgebra An−1 of the mod p Steenrod algebra.

Using this to compute connective Morava K-theories through the Adams spectral sequence, it
easily follows that the type of Φ{0}(F (n)) is at least n (see the proof of [Mit85, Thm. 4.8] for details
of this argument). Since we have already seen that the ∆-geometric fixed points of F (n) have type
zero, we know that the type of Φ{0}(F (n)) can be at most n by Theorem 2.1. So it must be exactly
n, which concludes the proof. �

Remark 4.5. The case n = 1 of Theorem 2.2 admits a nice direct proof, which we learned from
Akhil Mathew: Let F (1)′ ∈ SpωZ/pZ denote the cofiber of the transfer map t : S0 → Z/pZ+ → S0.

On geometric fixed points, this map is zero because it factors through ΦZ/pZ(Z/pZ+) ' 0, hence
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ΦZ/pZ(F (1)′) ' S0∨S1 has type zero. The non-equivariant map underlying t is simply multiplication
by p, hence Φ{0}(F (1)′) is equivalent to S0/p, and thus has type one.
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