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Abstract. Inspired by the Ax–Kochen isomorphism theorem, we develop a notion of

categorical ultraproducts to capture the generic behavior of an infinite collection of

mathematical objects. We employ this theory to give an asymptotic solution to the
approximation problem in chromatic homotopy theory. More precisely, we show that

the ultraproduct of the E(n, p)-local categories over any non-principal ultrafilter on the
set of prime numbers is equivalent to the ultraproduct of certain algebraic categories

introduced by Franke. This shows that chromatic homotopy theory at a fixed height is

asymptotically algebraic.
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1. Introduction

Motivation and background. The guiding problem in stable homotopy theory is the
computation of the stable homotopy groups of spheres π∗S

0. The first attempts at this
calculation, for example via a Postnikov filtration, are of limited use and only provide
coarse information about the large scale structure of π∗S

0. Motivated by patterns seen in
the Adams spectral sequence, chromatic homotopy theory yields a more efficient filtration
of π∗S

0 through localizations Ln,pS
0 of the sphere spectrum at the chromatic primes (n, p).

These localizations fit into the chromatic tower

. . . // Ln,pS0 // . . . // L1,pS
0 // L0,pS

0 ' S0
Qp

and the chromatic convergence theorem of Hopkins and Ravenel implies that the resulting
filtration on π∗S

0 is exhaustive. In fact, this tower arises from an ascending filtration of the
(p-local) stable homotopy category Sp,

SpQ ' Sp0,p ⊂ Sp1,p ⊂ . . . ⊂ Spn,p = Ln,p Sp ⊂ . . . ⊂ Sp,
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with filtration quotients equivalent to the category of K(n, p)-local spectra, where K(n, p)
is Morava K-theory. This filtration is exhaustive when restricted to finite spectra, but not
in general. The chromatic approach thus divides the computation of π∗S

0 into two main
problems:

(1) The study of the categories Spn,p and the calculation of the local homotopy groups

π∗Ln,pS
0 for each n ≥ 0 and every prime p.

(2) The question of how to assemble these local pieces to reconstruct π∗S
0.

The goal of this paper and its sequel is to show that, asymptotically in the prime p, both
problems are controlled entirely by algebraic geometry. More generally, our main result pro-
vides a solution to the longstanding open question of finding a good algebraic approximation
to Spn,p for n < ∞. Serre’s work addresses this problem when n = 0 and shows that this
case is governed entirely by the theory of rational vector spaces. However, for every n > 0
and any prime p, these categories do not admit an algebraic model.

It is nevertheless possible to algebraically model partial information about Spn,p. For
instance, Bousfield gave a purely algebraic classification of all homotopy types in this cat-
egory when n = 1. As n goes to infinity, the complexity of Spn,p increases rapidly and all
known algebraic approximations grow coarser. In the extremal case n =∞, the “Mahowald
uncertainty principle” states that even the homotopy types of objects cannot be modeled
algebraically.

To describe the algebraic approximations we will use, recall that Quillen’s work on com-
plex cobordism reveals a close connection between stable homotopy theory and the moduli
stack of formal groups Mfg: the cohomology of the tensor powers of the canonical line
bundle on the moduli stack forms the E2-page of the Adams–Novikov spectral sequence
converging to π∗S

0. The p-local moduli stack (Mfg)p admits an increasing filtration by
the open substacks (Mfg)n,p consisting of formal groups of height ≤ n at the prime p that
mirrors the chromatic filtration as observed by Morava. Our approximation to Spn,p will
be a category Frn,p of twisted complexes of quasi-coherent sheaves on (Mfg)n,p introduced
and first studied systematically by Franke.

We can now state a first version of our main result.

Theorem. For any n ≥ 0, there is a symmetric monoidal equivalence

lim
p→∞

Spn,p ' lim
p→∞

Frn,p .

The limit notation is justified as we are capturing the asymptotic behavior of these cate-
gories, however it does not stand for the categorical limit (or the topological limit). Indeed,
there are no natural functors between the categories as p varies. Instead, to produce a
limiting object out of the collections of categories Spn,p and Frn,p as p → ∞, we construct
a categorical analogue of the model-theoretic notion of ultraproducts. A key feature of the
ultraproduct construction is that it captures the generic behavior of a collection of objects.
Thus the theorem above allows one to study questions about the generic behavior of chro-
matic homotopy theory by purely algebraic means.

In more detail. It has long been understood that chromatic homotopy theory at a fixed
height n simplifies as the prime tends towards infinity. This simplification manifests itself
as sparseness in various spectral sequences leading to certain topological constructions (the
existence of Smith–Toda complexes, Picard groups, homotopy groups of finite complexes)
being completely controlled by algebra. However the size of the prime needed for these
constructions to be purely algebraic depends on the construction.
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In the early 1990s, Franke [Fra] introduced categories Frn,p of quasi-periodic chain com-
plexes of comodules whose homotopy theory was intended to converge to Spn,p in the limit
p → ∞. However, as observed by Patchkoria [Pat17], his work remains incomplete due to
the difficulty of directly comparing the algebraic categories to the topological categories.
In contrast, our approach to circumvent this problem is based on and inspired by concepts
from mathematical logic.

Our use of ultraproducts resembles the use in the celebrated Ax–Kochen isomorphism
theorem ([AK65a, AK65b, AK66]). Their theorem produces an astounding bridge between
local fields of characteristic 0 and local fields of characteristic p, which is a non-canonical
isomorphism between ultraproducts∏

F
Qp ∼=

∏
F
Fp((x)),

for every non-principal ultrafilter F on the prime numbers. Thus,  Los’s theorem implies
that a first order statement in the theory of fields holds for Fp((x)) for almost all p if and only
if it holds for Qp for almost all p. For example, Lang proved the existence of non-trivial
zeros for all degree d homogeneous polynomials in at least d2 + 1 variables over Fp((x)).
Since the existence of such a zero is a first order statement, for any prime p different from a
finite number of exceptional primes, any degree d homogeneous polynomial in at least d2 +1
variables with coefficients in Qp has a non-trivial zero.

More generally, let
∏
FMi be the ultraproduct of a collection of models (Mi)i∈I for

some first order theory with respect to an ultrafilter F on I.  Los’s theorem states that
a first order statement is true for Mi for almost all i ∈ I if and only if it is true for∏
FMi for all non-principal F . Thus  Los’s theorem demonstrates that ultraproducts at non-

principal ultrafilters can be used to capture the asymptotic behavior of a collection of models.
At the same time, the ultraproducts

∏
FMi for non-principal F often exhibit interesting

new features. For instance, in the case of the isomorphism above, the ultraproduct of
characteristic p fields

∏
FFp((x)) is a characteristic 0 field.

We modify the definition of the ultraproduct to function in the homotopical world. Given
a collection of objects (cp)p∈P in an ∞-category C indexed by a set P, we define the ultra-
product to be ∏

F
cp = colim

U∈F

∏
i∈U

cp,

where the colimit is along reverse inclusions. Let Spn,p be the E(n, p)-local category, let
Frn,p be Franke’s algebraic category, and let F be a non-principal ultrafilter on P. The
main result is a symmmetric monoidal equivalence of ∞-categories∏

F
Spn,p '

∏
F

Frn,p,

where the ultraproduct is taken in a suitable subcategory of the ∞-category of symmetric
monoidal ∞-categories.

The following consequence of  Los’s theorem is known as the transfer principle: given two
collections of objects (ap)p∈P and (bp)p∈P indexed by a set P such that the ultraproducts∏
Fap and

∏
Fbp are isomorphic for every non-principal ultrafilter on P, then a first order

statement is true for all but finitely many elements in (ap) if and only if it is true for all but
finitely many objects in (bp). To extract results from our equivalences, one would like an
analogous transfer principle in the ∞-categorical setting. In lieu of such an ∞-categorical
transfer principle, we provide arguments that establish the transfer principle for specific
problems that we are interested in.
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Applications. Our main theorem has a variety of applications. In order to display the
utility of the result, we establish the first of these applications in this paper. We leave the
remaining applications for the sequels.

Recall that a p-local Smith–Toda complex of type k + 1 is a spectrum Vp(k) such that
BP∗(Vp(k)) ∼= BP∗/(p, . . . , vk); their existence and non-existence is a major open problem
in stable homotopy theory [Nav10]. Further, the existence of multiplicative structure on
these Smith–Toda complexes is subtle: The mod p Moore spectrum Vp(0) = S0/p admits
the structure of an An-algebra if and only if n < p, which is intimately related to Schwede’s
proof of the rigidity of the stable homotopy category [Sch07]. More generally, Nave also
showed that, for p ≥ 7, if Vp(

p−3
2 ) exists, then it does not admit the structure of an A2-

algebra, where A2 is the 2nd associative operad.
A consequence of our equivalence is that locally any given obstruction to the existence of

Smith–Toda complexes or multiplicative structure on them vanishes for almost all primes.
More precisely, let En,p be a height n Morava E-theory. For any 0 ≤ k < n and p large
enough (depending on n and k), we show that there exists an En,p-local spectrum Vn,p(k)
such that (En,p)∗(Vn,p(k)) ∼= (En,p)∗/(p, . . . , vk). Further, since the algebraic analogues
of the local Smith–Toda complexes in Frn,p are E∞-algebras, part of this multiplicative
structure can be transferred through our equivalence. Let Am be the mth associative operad.

Corollary. For any m > 0 and n > k ≥ 0, there exists a prime p0 such that, for all primes
p > p0, there exists an En,p-local Am-algebra spectrum Vn,p(k) such that (En,p)∗(Vn,p(k)) ∼=
(En,p)∗/(p, . . . , vk).

The existence of local analogues of the Smith–Toda complexes is a problem that is
amenable to classical methods, but the multiplicative structure guaranteed in the corol-
lary above appears to be more difficult to obtain. Besides the equivalence of the main
theorem, the key ingredient in the proof of the corollary is the fact that Am is compact
as an ∞-operad. In fact, the corollary applies to local generalized Moore spectra and any
compact ∞-operad.

Information also flows through our equivalence from stable homotopy theory to algebraic
geometry. Hovey and Sadofsky [HS99] have shown that the Picard group of Spn,p is isomor-

phic to Z for 2p−2 > n2 +n. Since the equivalence is symmetric monoidal, this implies that
the Picard group of Frn,p is isomorphic to Z for large enough primes generalizing a result of
Barnes and Roitzheim [BR11] for n = 1.

Hopkins’ chromatic splitting conjecture [Hov95] describes how the sphere spectrum S0

can be assembled from its local pieces Ln,pS
0. More precisely, the conjecture stipulates that

the bottom map in the chromatic pullback square

Ln,pS
0 //

��

LK(n,p)S
0

��
Ln−1,pS

0 // Ln−1,pLK(n,p)S
0

is split and proposes a precise decomposition of the cofiber. The known cases of this con-
jecture give another example of the asymptotic behavior of chromatic homotopy theory.
The chromatic splitting conjecture is known for n = 1 and all p and also n = 2 and p ≥ 3
[GHMR05, GHM14]. At n = 2 and p = 2 the conjecture is false [Bea17, BGH17], which
suggests that, at each height, the conjecture may only hold for all but a finite set of primes.
However, the current approaches appear to be infeasible at higher heights. Using a K(n)-
local refinement of the equivalence of the main theorem, we reduce the chromatic splitting
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conjecture for large enough primes to a purely algebro-geometric question, thereby offering
a novel attack on the problem.

Outline of the results and proof. Let I be a set and let (Ci)i∈I be a collection of
compactly generated ∞-categories. We define the ultraproduct to be∏ω

F
Ci = colim

U∈F

∏
i∈U
Ci,

where the colimit is along reverse inclusions and taken in the ∞-category of compactly
generated ∞-categories. Note that there is a canonical functor∏

I
Ci →

∏ω

F
Ci

which is surjective on compact objects.
The ultraproduct shares many properties with and can be understood in terms of the

input compactly generated ∞-categories. For instance, if c and d are compact objects in
the ultraproduct and (ci)i∈I and (di)i∈I are preimages of c and d in

∏
ICi, then

Map∏ω
FCi(c, d) '

∏
F

MapCi(ci, di),

where the ultraproduct on the right is taken in the ∞-category of spaces. Also, if the
categories Ci are stable and equipped with a symmetric monoidal structure, then so is the
ultraproduct.

For any compactly generated symmetric monoidal ∞-category C, we may implement
a familiar version of Whitehead’s theorem by localizing with respect to maps f : c → c′

such that [u, f ] : [u, c]
∼=−→ [u, c′] is an isomorphism for all invertible objects u in C. If the

compactly generated∞-categories Ci are symmetric monoidal, we obtain the “Pic-generated
protoproduct” ∏Pic

F
Ci

by localizing the ultraproduct
∏ω
FCi with respect to these equivalences. Informally speaking,

this process enforces a suitable finiteness condition on the ultraproduct.
To state the main theorem, we must describe the algebraic approximation to Spn,p that we

are going to use. In [Fra], Franke introduces a category of twisted complexes of (En,p)0En,p-
comodules. Consider the category with objects chain complexes of (En,p)0En,p-comodules
equipped with a chosen isomorphism

X
∼=−→ (X ⊗π0En,p (π2En,p))[2]

between the complex and the double suspension of the complex tensored with the invertible
comodule π2En,p and morphisms maps of complexes compatible with the chosen isomor-
phism. We establish several key features (at large enough primes) of a symmetric monoidal
model structure on this category defined by Hovey [Hov04] and Barnes–Roitzheim [BR11] in
which weak equivalences are quasi-isomorphisms of the underlying complexes of comodules.
Let Frn,p be the compactly generated symmetric monoidal ∞-category associated to this
symmetric monoidal model category.

Let I = P, the set of prime numbers, and let F be a non-principal ultrafilter on P. The
main theorem can be stated as follows:

Theorem. For any n ≥ 0, there is a symmetric monoidal equivalence of Q-linear stable
∞-categories ∏Pic

F
Spn,p '

∏Pic

F
Frn,p .
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The proof of this theorem passes through a descent result on each side. Mathew [Mat16],
building on Lurie’s homotopical descent theory and classical work of Hopkins and Ravenel
[Rav92], produces an equivalence

Spn,p ' lim ModE⊗•+1
n,p

,

where the limit is taken over the cosimplicial diagram of∞-categories induced by the Amit-
sur complex E⊗•+1

n,p of S0 → En,p.
We prove a similar result on the algebraic side. Let GrAb be the category of graded

abelian groups and let H : GrAb→ Sp be the Eilenberg–MacLane functor. For a spectrum
X, we write X? for Hπ∗X. Since H is lax monoidal, applying (−)? to a cosimplicial E∞-ring
spectrum produces a cosimplicial E∞-ring spectrum. We produce an equivalence

Frn,p ' lim Mod(E⊗•+1
n,p )?

.

Using these equivalences as well as the generic uniform bound on the cohomological
dimension of the Morava stabilizer group, we study the analogous descent questions at a
non-principal ultrafilter F . We produce equivalences∏Pic

F
Spn,p ' Loc Pic lim

∏Pic

F
ModE⊗•+1

n,p

and ∏Pic

F
Frn,p ' Loc Pic lim

∏Pic

F
Mod(E⊗•+1

n,p )?
,

where the right hand side is the localizing subcategory (closure under all colimits) on the
invertible objects in the limit.

Thus it is crucial to understand the cosimplicial compactly generated ∞-categories∏Pic

F
ModE⊗•+1

n,p
and

∏Pic

F
Mod(E⊗•+1

n,p )?
.

Using Morita theory, we show that

lim
∏Pic

F
ModE⊗•+1

n,p
' lim Mod∏

FE
⊗•+1
n,p

and

lim
∏Pic

F
Mod(E⊗•+1

n,p )?
' lim Mod∏

F (E⊗•+1
n,p )?

,

where
∏
FE
⊗k
n,p and

∏
F (E⊗•+1

n,p )? are the ultraproducts in the ∞-category of E∞-ring spec-
tra. It suffices to gain a good understanding of the cosimplicial E∞-ring spectra∏

F
E⊗•+1
n,p and

∏
F

(E⊗•+1
n,p )?.

This is the purpose of the following theorem:

Theorem. There is an equivalence of cosimplicial E∞-ring spectra∏
F
E⊗•+1
n,p '

∏
F

(E⊗•+1
n,p )?.

In other words, the cosimplicial E∞-ring spectrum
∏
FE
⊗•+1
n,p is formal. Several ingre-

dients go into the proof of this theorem. The arithmetic fracture square is used to reduce
the result to the rational case and the case where the tensor product is relative to the p-
complete sphere spectrum Ŝ. The proof in the rational case is an application of obstruction
theory. The proof in the case relative to Ŝ is more difficult. We develop a functorial theory
of weights for spectra equipped with a naive Cp−1-action and apply it to the cosimplicial
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E∞-ring spectrum E
⊗Ŝ•+1
n,p . This gives a weight decomposition of cosimplicial spectra of the

form

E
⊗Ŝ•+1
n,p '

⊕
χ∈hom(Cp−1,Z×p )

(
E
⊗Ŝ•+1
n,p

)
χ
,

indexed by characters of Cp−1. This decomposition reflects the fact that the non-trivial
k-invariants of En,p grow sparser as p increases. Applying the ultraproduct over a non-
principal ultrafilter, we find that the cosimplicial spectrum is formal.
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Conventions. Throughout this paper we will employ the following conventions:

• We write Map for mapping spaces in∞-categories and Hom for mapping spectra in
stable ∞-categories.

• The ∞-category of commutative monoids in a symmetric monoidal ∞-category C
will be denoted by CAlg(C) and we refer to its objects as commutative algebras in
C. For C = Sp equipped with its natural symmetric monoidal structure, we usually
say E∞-ring spectrum or E∞-ring instead of commutative algebra.

• A symmetric monoidal presentable ∞-category C = (C,⊗) is called presentably
symmetric monoidal if the monoidal structure ⊗ preserves colimits separately in
each variable.

• By symmetric monoidal compactly generated ∞-category we always mean a com-
pactly generated∞-category equipped with a symmetric monoidal structure ⊗ such
that ⊗ commutes with all colimits and restricts to a symmetric monoidal structure
on the full subcategory Cω of compact objects in C. In particular, the unit object is
assumed to compact.

• If C is a presentably symmetric monoidal stable∞-category and A is a commutative
algebra in C, then ModA(C) denotes the stable ∞-category of modules over A in C.
In the case C = Sp, we will write ModA instead of ModA(C) for simplicity. Similarly,
we write CAlgA(C) for the ∞-category of commutative A-algebras in C and omit
the ∞-category C when it is clear from context and in particular whenever C = Sp.

• Let G be a finite group. The category of naive G-spectra is by definition the functor
category Fun(BG, Sp), where the classifying space BG of G is considered as an
∞-groupoid.

2. Recollections

2.1. Ultrafilters. In this subsection we explain the basics of ultrafilters and ultraproducts.
Our goal is to give the background necessary for the paper and a brief introduction for the
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working homotopy theorist. More details may be found in many textbooks, e.g., [BS69] or
[CK90]; we will primarily follow [Sch10].

The basic definition is the following:

Definition 2.1. An ultrafilter F on a set I is a nonempty collection of subsets of I satisfying:

(1) The empty set is not an element of F .
(2) If A ⊆ B ⊆ I and A ∈ F , then B ∈ F .
(3) If A,B ∈ F , then A ∩B ∈ F .
(4) If A ⊆ I, then either A ∈ F or I \A ∈ F .

A filter is a subset of the power set of I satisfying all but the last axiom. A filter may be
completed to an ultrafilter in many ways, assuming the axiom of choice.

Lemma 2.2. If F is a filter on I, then there exists an ultrafilter F on I containing F .

Proof. This is an application of Zorn’s lemma. The union of a chain of filters is a filter and
a maximal filter is an ultrafilter. �

The following lemma is useful:

Lemma 2.3. Suppose I is a set and F is an ultrafilter on I. If I1 t I2 t . . . t In = I is a
finite partition of I, then there exists exactly one 1 ≤ i ≤ n such that Ii ∈ F .

Proof. If Ii /∈ F for all i, then ∅ =
⋂n
i=1(I \ Ii) ∈ F , a contradiction. If there exist i 6= j

such that Ii, Ij ∈ F , then ∅ = Ii ∩ Ij ∈ F . The claim follows. �

Example 2.4. Given an element x ∈ I, the set of subsets of I containing x is an ultrafilter
denoted Fx. The ultrafilters of this form are called principal ultrafilters. Because of this,
the ultrafilters on a set may be considered as generalized elements of the set.

Lemma 2.5. An ultrafilter F that contains a finite set is principal.

Proof. We may partition I into the points of the finite set and the complement of the finite
set. Since F contains a finite set, it does not contain the complement, so one of those points
must be in F by the previous lemma. �

It is reasonably easy to construct non-principal filters. For instance, the collection of
cofinite subsets of an infinite set I is a filter, known as the Frechet filter F∞, but it is not
an ultrafilter. By [Bla77], the existence of a non-principal ultrafilter is independent of ZF
so it is impossible to explicitly describe non-principal ultrafilters.

Lemma 2.6. An ultrafilter F is non-principal if and only if it contains F∞.

Proof. This follows immediately from Lemma 2.5. �

Lemma 2.7. If A ⊆ I is infinite, then there exists a non-principal ultrafilter F on I such
that A ∈ F .

Proof. Consider the collection of subsets of I that contain all but a finite number of elements
in A. This is a filter that contains F∞ and by Lemma 2.2 it can be completed to an
ultrafilter. �
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2.2. Set-theoretic ultraproducts. For the rest of this section, I will denote some indexing
set, for example the set of prime numbers P = {2, 3, 5, 7, . . .}.

Definition 2.8. Let (Ai)i∈I be a collection of nonempty sets and let F be an ultrafilter on
I. The ultraproduct of the sets (Ai)i∈I over the ultrafilter F is the quotient of the product∏
i∈IAi defined by the relation

(ai)i∈I ∼ (bi)i∈I if and only if {i ∈ I|ai = bi} ∈ F .
We will denote the quotient (

∏
i∈IAi)/∼ by

∏
FAi.

By definition, there is a quotient map from the product to the ultraproduct∏
i∈I
Ai →

∏
F
Ai.

We will denote the image of (ai) ∈
∏
i∈IAi in the ultraproduct by [ai]. If the Ai’s are all

the same set A, then we will refer to an element [ai] ∈
∏
FA as constant if it is the image

of (a)i∈I for some a ∈ A.
The ultraproduct of a collection of sets of bounded finite cardinality is particularly simple.

Example 2.9. Let X be a finite set and let F be an ultrafilter on I. There is an isomorphism∏
F
X ∼= X,

where the ultraproduct is taken over the constant collection Ai = X: Let (xi)i∈I ∈
∏
i∈IX.

We may may produce a finite partition of I indexed by the elements of X by setting

Ix = {i ∈ I : xi = x}.
By Lemma 2.3, only one of these sets can be in F , thus [xi] is constant in

∏
FX.

Ultraproducts preserve many algebraic structures, for instance the structure of being an
abelian group, commutative ring, field, and so on. These are all special cases of a result due
to  Loś, which is often referred to as the fundamental theorem of ultraproducts.

Theorem 2.10 ( Loś). Let L be a language and let F be an ultrafilter on a set I. Suppose
(Xi)i∈I is a collection of L-structures with ultraproduct X =

∏
FXi. Let

(xi,1)i∈I , . . . , (xi,n)i∈I ∈
∏

i∈I
Xi

be n elements in the product. Then for any formula φ in n unbounded variables, φ([xi,1], . . . , [xi,n])
holds in X if and only if

{i ∈ I : φ(xi,1, . . . , xi,n) holds in Xi)} ∈ F .

Informally speaking, the content of this theorem can be summarized by saying that a first
order statement holds for the ultraproduct if and only if it holds on a set in the ultrafilter.

Example 2.11. Let Ap = Fp be the finite field of order p. Given an ultrafilter F on the
set of primes P, we may form the ultraproduct

FF =
∏
F
Fp.

By  Loś’s theorem, FF is a field which behaves much like finite fields. For instance, the
absolute Galois groups of FF is Ẑ. The fields obtained in this way are known as pseudo-
finite fields [Ax68].

If F = Fp is principal then the ultraproduct is just Fp. Otherwise the ultraproduct
is a characteristic 0 field. The reason for this is because multiplication by n on Fp is an
isomorphism for all but finitely many p. Since F is non-principal this means that it is an
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isomorphism on a set in the ultrafilter. This implies that multiplication by n induces an
automorphism of the ultraproduct.

The properties of these fields depend on the ultrafilter chosen. For example, by  Loś’s
theorem −1 is a square in FF if and only if F contains the set of primes that are congruent
to 1 mod 4.

Example 2.12. Consider the ultraproduct ZF =
∏
FZp of the p-adic integers with re-

spect to a non-principal ultrafilter F on P. By an argument similar to the one used in
Example 2.11, ZF is a commutative algebra over Q.

Example 2.13. We may let Ai = N and take the ultraproduct

NF =
∏
F
N.

For F non-principal this is a semiring of cardinality 2ℵ0 . If the sequence (ni) ∈
∏
i∈IN is

bounded on a set in the ultrafilter then [ni] is constant.

Example 2.14. We will let ZF be the ultraproduct
∏
FZ. The canonical maps Z→ Z/n,

induce a surjection

ZF � Ẑ.
The kernel of this map is an uncountable rational vector space.

As we will show in the next example, the ultraproduct does not necessarily send polyno-
mial rings to polynomial rings.

Example 2.15. Let Ap = Fp[x] and let F be an ultrafilter on P. Consider the ultraproduct∏
F

(Fp[x]).

If F is principal, then this is the polynomial ring in one variable over Fp. It is generated as a
module over Fp by the monomials xn where n ∈ N = NF . For F a non-principal ultrafilter,
the resulting ring is very large and more difficult to describe (with generators and relations).
For instance, it contains the equivalence class of(

p∑
i=0

xi

)
p∈P

in which the degree and number of monomials involved in each term both grow to infinity.

This example represents a weakness of ultraproducts. They do not preserve gradings
and send unbounded phenomena (such as sequence of polynomials with unbounded degree)
to rather exotic objects. There is a solution to this problem, known as the protoproduct
[Sch10, Chapter 9], whose categorical analogue plays an important role throughout this
paper. The protoproduct takes in a collection of filtered objects and produces a subset
of the ultraproduct. The next examples display the behavior of the protoproduct for two
filtrations on polynomial rings.

Example 2.16. We will use the notation of the previous example. Consider the collection
(Fp[x],Fp[x]≤k)p∈P of polynomial rings equipped with the degree filtration, so Fp[x]≤k is
the subset of Fp[x] of polynomials of degree ≤ k. The protoproduct is defined as a quotient
of the “bounded product”∏[

P
(Fp[x],Fp[x]≤k) = colim

k

∏
P
Fp[x]≤k
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by the same equivalence relation as the ultraproduct. Since colimits and quotients commute,
this quotient is the same as the colimit∏[

F
(Fp[x],Fp[x]≤k) = colim

k

∏
F
Fp[x]≤k ∼= (colim

k

∏
P
Fp[x]≤k)/∼.

The protoproduct along the degree filtration sends polynomial rings to polynomial rings:∏[

F
(Fp[x],Fp[x]≤k) ∼= FF [x].

Example 2.17. There is another natural filtration that we may put on Fp[x]. Let Fp[x]≤k-mon

be the subset of polynomials built out of less than or equal to k monomials. For F a non-
principal ultrafilter, the protoproduct∏[

F
(Fp[x],Fp[x]≤k-mon)

is the monoid-algebra over FF on NF . It has an FF -basis given by x[np] where [np] ∈ NF .
Thus this is an “ultra” polynomial ring. It is not graded by the natural numbers but by
NF .

Remark 2.18. Let I be a set viewed as a discrete space, and denote by βI the set of
ultrafilters on I, with a natural map I → βI given by sending an element x ∈ I to the
principal ultrafilter Fx on I. For A ⊆ I, write Â for the family of ultrafilters on I containing
A. The sets Â for all A ⊆ I form a basis of open subsets for the topology on βI, the Stone
topology. This construction makes βI into a compact Hausdorff space, and I → βI can be
identified with the Stone–C̆ech compactification of I.

In these terms, the ultraproduct admits a geometric interpretation in the following
sense [Sch10]: Consider a category C closed under products and filtered colimits and let
(ci)i∈I ∈ CI be a collection of objects in C indexed by the set I. A sheaf on the discrete
space I with values in a category C is given by a functor∏

−
ci : (A ⊆ I) 7→

∏
i∈A

ci.

For a given ultrafilter F on I, the two inclusions ι : I → βI and {F} → βI induce geomet-
ric morphisms (ι∗, ι

∗) and (F∗,F∗) between the corresponding categories of sheaves. The
composite

Sh(I)
ι∗ // Sh(βI)

F∗ // C
can then be identified with the ultraproduct functor

∏
F . In other words, the ultraproduct∏

Fci is equivalent to the stalk at F of the sheaf ι∗E , where E ∈ Sh(I) corresponds to the
collection (ci)i∈I .

3. Ultraproducts

3.1. Ultraproducts in ∞-categories. In this section, we define the ultraproduct of a col-
lection of objects in an∞-category that admits filtered colimits and products. In particular,
we study the special case of the ∞-category Cat∞ of ∞-categories, which gives rise to the
ultraproduct of ∞-categories. An independent account of some of the results in this section
can be found in [Lurb, E.3.3.4].

Given a collection of nonempty sets Xi and an ultrafilter F on I, there is a canonical
isomorphism ∏

F
Xi =

(∏
I
Xi

)
/ ∼

∼=−→ colim
U∈F

∏
i∈U

Xi
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induced by the projections, where the colimit is taken along reverse inclusions. This moti-
vates the following definition:

Definition 3.1. Let C be an ∞-category that admits products and filtered colimits and let
(ci)i∈I be a collection of objects in C. For an ultrafilter F on I we define the ultraproduct
of (ci)i∈I to be the object ∏

F
ci = colim

U∈F

∏
i∈U

ci,

where the colimit is taken along reverse inclusions.

Remark 3.2. Let U ∈ F , then we obtain an ultrafilter on the set U , FU , by intersecting the
elements of F with U . Let C be an ∞-category with products and filtered colimits and let
(ci)i∈I be a collection of objects in C. There is a canonical equivalence∏

F
ci '

∏
FU
ci.

Thus for any set U /∈ F , we may “throw out” the objects supported on U . When F is
non-principal, Lemma 2.5 implies that we may throw out any finite number of objects in
the ultraproduct.

Example 3.3. If F = Fj is a principal ultrafilter for some j ∈ I then∏
Fj
ci ' cj .

Remark 3.4. If C is compactly generated then filtered colimits are left exact [Heu, Lemma
A.4]. Therefore, when C is compactly generated the ultraproduct commutes with finite
limits.

By the definition of ultraproduct, there is a canonical map

[−]F :
∏

I
ci −→

∏
F
ci.

When F is clear from context, we will abbreviate this to [−].
We now consider the case that C is Cat∞, which is bicomplete [Lur09, Sections 3.3.3,

3.3.4] and compactly generated [Lur09, Section 5.5]. Given a collection of ∞-categories
(Ci)i∈I and objects ci ∈ Ci, we will write (ci)i∈I for the corresponding object in the product∏
ICi and [ci]F for the object [(ci)i∈I ]F in the ultraproduct

∏
FCi. When the indexing set

I is clear we will denote these objects by (ci) and [ci]. If c ∈
∏
FCi, we will say that c is

represented by (ci) ∈
∏
ICi if [ci] ' c.

Let Top be the∞-category of∞-groupoids. We will refer to the objects of Top as spaces.
The inclusion functor from spaces to ∞-categories

Top→ Cat∞

has both a right adjoint, which is the core functor C 7→ C', and a left adjoint, which is the
groupoidification functor C 7→ C[C−1]. The notation C[C−1] is justified by considering the
groupoidification as “inverting all morphisms in C”. One can also invert only some of the
morphisms: Given a subcategory W ⊂ C, we can define C[W−1] to be the pushout of the
diagram

W //

��

C

W [W−1].
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It is easy to see that for every ∞-category D we get that Fun(C[W−1],D) = DC[W−1] is
the full subcategory of Fun(C,D) consisting of functors that send a morphism in W to an
equivalence in D.

Lemma 3.5. Let C and D be ∞-categories and let W ⊂ C. There is an equivalence of
∞-categories

(C × D)[(W ×D')−1]
'−→ C[W−1]×D.

Proof. We shall first prove this for W = C. In this case we are required to prove the following
diagram is a pushout diagram

W ×D' //

��

W ×D

��
W [W−1]×D' // W [W−1]×D.

It is enough to show that for every ∞-category T the following diagram is a pullback
diagram:

Fun(D, T W [W−1]) //

��

Fun(D, T W )

��
Fun(D', T W [W−1]) // Fun(D', T W ).

This follows from the fact that T W [W−1] → T W is a fully faithful functor.
Now for a general W ⊂ C consider the diagram

W ×D' //

��

W ×D

��

// C × D

��
W [W−1]×D' // W [W−1]×D // C[W−1]×D.

The right square is a pushout square since − × D preserves colimits and, since the left
square is a pushout square, the outer square is also a pushout square. �

Corollary 3.6. Let C and D be ∞-categories and let W ⊂ C and V ⊂ D be subcategories
that contain the core. There is an equivalence of ∞-categories

(C × D)[(W × V )−1]
'−→ C[W−1]×D[V −1].

Proof. This follows from the universal property and applying Lemma 3.5 twice. �

We will say that an ∞-category is contractible if its underlying simplicial set (or the
∞-groupoid C[C−1]) is contractible. For instance, if C has an initial or terminal object, then
it is contractible.

Proposition 3.7. Let (Ci)i∈I be a collection of ∞-categories such that
∏
ICi is contractible.

There is an equivalence ∏
F
Ci ' (

∏
I
Ci)[W−1

F ],

where WF is the subcategory supported on the morphisms that are an equivalence on a set
in the ultrafilter.
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Proof. Let

WU =
∏

i∈U
C'i ×

∏
i/∈U
Ci.

Note that
WF = colim

U∈F
WU .

For every U ∈ F , there is a pushout diagram

WU
//

��

∏
ICi

��
WU [W−1

U ] // (
∏
ICi)[W

−1
U ].

Since W 7→W [W−1] is a left adjoint, taking the colimit over U ∈ F gives an equivalence

(
∏

I
Ci)[W−1

F ] ' colim
U∈F

(∏
I
Ci
[
W−1
U ]
])
.

By Lemma 3.5 we get

(
∏

I
Ci)[W−1

F ] ' colim
U∈F

(∏
i∈U
Ci ×

∏
i/∈U
Ci[(
∏

i/∈U
Ci)−1]

)
.

Now since
∏
ICi is contractible none of the Ci are empty so we get that

∏
i/∈UCi is a retract

of
∏
ICi and thus

∏
i/∈UCi is contractible. We get that

(
∏

I
Ci)[W−1

F ] ' colim
U∈F

(∏
i∈U
Ci × ∗

)
'
∏
F
Ci. �

Remark 3.8. Note that the∞-category
∏
ICi is contractible if it has a terminal (respectively

initial) object. This happens if each Ci has a terminal (respectively initial) object.

Given a model category in which filtered colimits of weak equivalences are weak equiva-
lences, homotopy filtered colimits can be computed 1-categorically. Since products of weak
equivalences between fibrant objects are always weak equivalences, this implies that ultra-
products of fibrant objects can be computed 1-categorically. Model categories with the
property that filtered colimits of weak equivalences are weak equivalences include the cate-
gory of simplicial sets with the Quillen or Joyal model structure and the category of chain
complexes of modules over a ring with the standard model structure.

Lemma 3.9. The ultraproduct of quasicategories and spaces may be computed set-wise.
That is, for quasicategories (Si,•)i∈I , for all n ∈ N, we have

(
∏
F
Si,•)n ∼=

∏
F
Si,n.

Lemma 3.10. Filtered colimits distribute over infinite products in the ∞-category Top.
That is, let I be a set and for each i ∈ I, let Ji be a filtered category and

Fi : Ji −→ Top

be a functor. Let

F :
∏

I
Ji

∏
IFi−→ TopI

∏
−→ Top

be the composite, then there is a canonical equivalence

colim∏
IJi

F '
∏

I
colim
Ji

Fi.
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Proof. This is true in Set by [ALR03]. Therefore, 1-categorically, it is true in sSet and since
the Quillen model structure on sSet satisfies the conditions of the paragraph above, it is
true homotopically since we may apply fibrant replacement. �

Lemma 3.11. Let (Ci)i∈I be a collection of ∞-categories and let F be an ultrafilter on I.
There is an equivalence of ∞-categories

(
∏
F
Ci)op '

∏
F

(Cop
i ).

3.2. Ultraproducts of ∞-categories. We study categorical properties of ultraproducts
of ∞-categories. We begin with a key proposition computing Hom-spaces in ultraprod-
ucts of ∞-categories. The proof of this proposition depends on a technical lemma due to
Rozenblyum.

Proposition 3.12. Let (Ci)i∈I be a collection of ∞-categories. For two objects c, d ∈
∏
FCi

represented by (ci) and (di), there is a natural equivalence

Map∏
FCi(c, d) '

∏
F

Map(ci, di).

Proof. This follows immediately from Lemma 3.13 and the analogous fact for products. �

Lemma 3.13. Suppose F : I → Cat∞ is a filtered diagram of ∞-categories with colimit C,
let i0, i1 ∈ I and let ci0 be an object in F (i0) and di1 an object in F (i1). Let

I(i0,i1)/ = Ii0/ ×I Ii1/
and let j̄ = (i0 → j ← i1) ∈ I(i0,i1)/. Let cj , dj ∈ Cj be the images of ci0 and di1 in Cj
under the maps determined by j̄ and let c, d ∈ C be the images of ci0 and di1 in C. There is
a binatural equivalence of functors on Cop

i0
× Ci1

MapC(c, d) ' colimj̄∈I(i0,i1)/
MapCj (cj , dj).

Proof. This is proven in [Roz]; since this document is not published, we reproduce the
argument here with the author’s permission. Rezk constructs a fully faithful filtered colimit
preserving functor

CS: Cat∞ // Top∆op

,

sending a quasi-category C to the simplicial object J 7→ homCat∞(J, C), see [Rez01] and
[JT07]. The essential image of CS is the collection of complete Segal spaces. The conditions

for an object X ∈ Top∆op

to be a complete Segal space only involve finite diagrams, so
CS preserves filtered colimits. For x, y ∈ C, the mapping space between x and y can be
computed as the fiber

MapC(x, y) ' fib(x,y)(CS1(C) (source,target)−−−−−−−−−→ CS0(C)× CS0(C))
over (x, y). Again using that filtered colimits commute with finite limits in Top, the claim
follows. �

Proposition 3.12 has the following consequences:

Corollary 3.14. For c, d ∈
∏
FCi represented by (ci) and (di), there is an isomorphism

[c, d] ∼=
∏
F

[ci, di],

where the ultraproduct is computed in the category of sets.

Proof. This is due to the fact that π0 commutes with filtered colimits as S0 is compact. �
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Corollary 3.15. The ultraproduct of fully faithful functors between ∞-categories is fully
faithful.

There is also a stable version of Proposition 3.12. Let Sp be the ∞-category of spectra.

Corollary 3.16. With notation as in Proposition 3.12, if the ∞-categories Ci are stable,
then so is the ultraproduct

∏
FCi and there is an equivalence of mapping spectra

Hom∏
FCi(c, d) '

∏
F

Hom(ci, di),

where the ultraproduct on the right side is computed in Sp.

Proof. Products of stable ∞-categories are stable by [Lura, Theorem 1.1.4.3] and filtered
colimits of stable ∞-categories are stable by [Lura, Theorem 1.1.4.6]. �

Lemma 3.17. Let (Ci)i∈I be a collection of ∞-categories. The ultraproduct
∏
FCi enjoys

the following properties:

(1) For a finite simplicial set K, there is a canonical equivalence of ∞-categories

Fun(K,
∏
F
Ci) '

∏
F

Fun(K, Ci).

(2) Let K be a finite simplicial set, assume we are given for all i ∈ I, ρi : K → Ci.
There is a canonical equivalence

(
∏
F
Ci)/∏Fρi '

∏
F
Ci/ρi ,

where
∏
Fρi : K →

∏
FCi.

(3) If each Ci has finite (co)limits then
∏
FCi has finite (co)limits.

(4) For any U ∈ F , the canonical map
∏
UCi →

∏
FCi preserves all finite (co)limits

that exist.
(5) If the functors fi : Ci → Di preserve finite (co)limits then the ultraproduct∏

F
fi :
∏
F
Ci −→

∏
F
Di

preserves all finite (co)limits that exist.
(6) Let fi : Ci → Di be a collection of (co)Cartesian fibrations, then

∏
Ffi is a (co)Cartesian

fibration.

Proof. Part (1) follows from the compactness of K in sSet. Recall that Cat∞ is compactly
generated so filtered colimits commute with pullbacks. As a composition of products and
filtered colimits, ultraproducts commute with pullbacks. Now Part (2) follows from the
pullback square:

C/ρ //

��

Fun(KC, C)

��
∗

ρ
// Fun(K, C).

For Parts (3), (4), and (5), in view of (2) and Lemma 3.11, it is enough to show that
∏
FCi

has an initial object, the map from the product to the ultraproduct preserves the initial
object, and that the initial object is preserved by

∏
Ffi. For each i ∈ I, let ∅i ∈ Ci be

a choice of initial object. We will show that [∅i] is initial in
∏
FCi. Indeed if ti ∈ Ci,

Proposition 3.12 gives equivalences

Map∏
FCi([∅i], t) '

∏
F

Map(∅i, t) '
∏
F
∗ ' ∗.
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To finish off Parts (4) and (5) note that the initial object is sent to the initial object under
both maps.

The proof of Part (6) is similar to the proof of the previous parts and uses Part (1) and
the fact that ultraproducts respect pullbacks. �

Corollary 3.18. Given a collection of adjunctions (fi : Ci � Di : gi)i∈I and an ultrafilter
F on I, there is an induced adjunction∏

Ffi :
∏
FCi

// ∏
FDi :

∏
Fgioo

such that the following diagram commutes:∏
ICi

∏
fi //

[−]

��

∏
IDi∏

gi

oo

[−]

��∏
FCi

∏
Ffi // ∏

FDi.∏
Fgi

oo

Proof. An adjunction of ∞-categories is a Cartesian and coCartesian fibration over ∆1.
Since

∏
F∆1 ' ∆1 by Example 2.9 and Lemma 3.9, the result follows from Part (6) of

Lemma 3.17. �

In contrast to Lemma 3.17, the ultraproduct in Cat∞ does not behave well with respect
to infinite (co)limits. It does not send presentable∞-categories to presentable∞-categories.
We work the example of the ultraproduct of the category of sets at a non-prinicipal ultrafilter
in order to clarify these issues.

Example 3.19. Consider
∏
F Set, the ultraproduct of the category of sets over a non-

principal ultrafilter F . We will produce an infinite tower in this category with no limit.
Let N̂ = [N]F . This object has the property that

Map∏
F Set(∗, N̂) ∼=

∏
F
N

as sets. Note that
∏
FN is linearly ordered by  Loś’s theorem. However, unlike N, it has

the property that an element may have an infinite number of elements less than it. In fact,
every element of N ⊂

∏
FN is less than every element of (

∏
FN)rN. The successor function

applied to each coordinate
∏
IN

s−→
∏
IN induces a map N̂ s−→ N̂. Consider the diagram

. . .
s−→ N̂ s−→ N̂.

Assume that a limit exists and call it X, then X has the property that

Map∏
F Set(∗, X) ∼= lim Map∏

F Set(∗, N̂) ∼= lim
∏
F
N.

There is an isomorphism

lim
∏
F
N ∼=

(∏
F
N
)
rN.

To see this note that it is clear that N is not in the limit. Every other element can have 1
subtracted from it to get another element in

(∏
FN
)
rN. That is, the map is an isomorphism

on the subset
(∏
FN
)
rN.

Finally, the limit (assuming it exists) X must be nonempty and thus must be the image
of a sequence (Xi) ∈

∏
I Set in which the sets Xi can be taken to be nonempty. We have a

canonical map

g : X −→ N̂
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to the first N̂ in the sequence. Since

Map∏
F Set(X, N̂) ∼=

∏
F

MapSet(Xi,N),

the map g can be represented by a collection of maps gi : Xi → N. Let ni be the smallest
natural number in the image of gi. The image of

Map∏
F Set(∗, X) −→

(∏
F
N
)
rN

cannot hit an element smaller than [ni] in
∏
FN as the following commutes∏

I MapSet(∗, Xi) //

��

∏
IN

��
Map∏

F Set(∗, X) // ∏
FN.

Thus, the map

Map∏
F Set(∗, X) −→

(∏
F
N
)
rN

is not an isomorphism and X cannot be the limit.

Remark 3.20. In light of this example, the reader might wonder if the ultraproduct inter-
nal to the ∞-category PrL of presentable ∞-categories and colimit preserving functors is
better behaved than

∏
F . This is not the case: Suppose F is a non-principal ultrafilter

on a set I and (Ci)i∈I is a collection of presentable ∞-categories. We claim that
∏pr
F Ci is

contractible, where
∏pr
F denotes the ultraproduct internal to PrL. Denote by 0pr = ∆0 the

initial presentable ∞-category and set

Ci,U =

{
Ci i ∈ U
0pr i 6∈ U.

By [HL, Remark 4.3.11], products and coproducts are canonically equivalent in PrL. So we
get ∏pr

F
Ci ' colimU∈F

∐
i∈U
Ci ' colimU∈F

∐
i∈I
Ci,U '

∐
i∈I

colimU∈F Ci,U .

Now since F is a non-principal, for any i ∈ I, there exists U ∈ F with i /∈ U , so we get∏pr

F
Ci ∼=

∐
i∈I

0pr
∼= 0pr.

Lemma 3.21. Let (Ci)i∈I and (Di)i∈I be collections of symmetric monoidal ∞-categories,
let (fi : Ci → Di)i∈I be a collection of symmetric monoidal functors, and let F be an ultra-
filter on I. The ultraproducts ∏

F
Ci and

∏
F
Di

are symmetric monoidal and the induced functor∏
F
fi :
∏
F
Ci →

∏
F
Di

is symmetric monoidal. Also, the canonical map

[−]F :
∏

I
Ci −→

∏
F
Ci

is symmetric monoidal.
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Proof. The∞-category of symmetric monoidal∞-categories and symmetric monoidal func-
tors is given as the category CAlg(Cat∞) of commutative algebra objects in Cat∞. The
forgetful functor CAlg(Cat∞) → Cat∞ preserves products and filtered colimits by [Lura,
Proposition 3.2.2.1] and [Lura, Corollary 3.2.3.2]. �

3.3. Compactly generated ultraproducts. The problems with the ultraproduct of ∞-
categories exposed in Example 3.19 are due to the fact that the ultraproduct is being taken in
Cat∞. In this subsection we study the ultraproduct in Catω∞, the ∞-category of compactly
generated ∞-categories and functors which preserve colimits and compact objects. We will
call the ultraproduct in Catω∞ the compactly generated ultraproduct and denote it by

∏ω
F (−).

Associating to a compactly generated ∞-category its subcategory of compact objects
induces a functor

(−)ω : Catω∞ // Cat∞

that preserves limits and filtered colimits (see [Heu, Lemma A.3]). In fact, this functor
induces an equivalence between Catω∞ and the ∞-category of small idempotent complete
∞-categories with finite colimits and finite colimit preserving functors [Heu, Proposition
A.1]. The inverse equivalence is given by Ind(−). Note that the forgetful functor Catω∞ →
Cat∞ does not preserve filtered colimits or infinite products, so the compactly generated
ultraproduct is not the ultraproduct in Cat∞. Moreover, recall that we always assume
the symmetric monoidal structure ⊗ on a compactly generated ∞-category C to preserve
compact objects, i.e., if X,Y ∈ Cω, then X ⊗ Y ∈ Cω.

Proposition 3.22. Let (Ci)i∈I be a collection of compactly generated ∞-categories and let
F be an ultrafilter on I. There is an equivalence∏ω

F
Ci ' Ind

∏
F
Cωi

between the compactly generated ultraproduct and the Ind-category of the ultraproduct of the
categories of compact objects.

Proof. The ∞-category
∏ω
FCi is compactly generated by definition. By [Heu, Proposition

A.1], it suffices to determine its subcategory of compact objects. Since (−)ω preserves
filtered colimits and products [Heu, Lemma A.3], we see that

(
∏ω

F
Ci)ω '

∏
F
Cωi

and the claim follows. �

For an ∞-category C, let

Pre(C) = Fun(Cop,Top)

be the ∞-category of presheaves on C. Consider the natural inclusion ι :
∏
FCωi →

∏
FCi.

The Yoneda embedding ∏
F
Ci

y−→ Pre(
∏
F
Ci)

may be restricted along ι to give a map

yι :
∏
F
Ci −→ Pre(

∏
F
Cωi ).

Since ι preserves finite colimits by Part (5) of Lemma 3.17, yι factors through Ind(
∏
FC

ω
i ) '∏ω

FCi to give map

m :
∏
F
Ci −→

∏ω

F
Ci.
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We may use this to build a “localization map” from the product to the compactly generated
ultraproduct. We will show that the composite∏

I
Ci

[−]−→
∏
F
Ci

m−→
∏ω

F
Ci.

is well-behaved.

Lemma 3.23. Let Ci ∈ Catω∞ be a collection of compactly generated ∞-categories indexed
by some set I. If

(1) Ci is stable for all i ∈ I or
(2) Ci is symmetric monoidal for all i ∈ I,

then so is
∏ω
FCi for any ultrafilter F on I.

Proof. For Part (1), Corollary 3.16 implies that ultraproducts of stable ∞-categories are
stable and it follows from [Lura, Theorem 1.1.3.6] that C stable implies that Ind(C) is
stable. Part (2) follows from Lemma 3.21 and [Lura, Theorem 4.8.1.13]. �

Before we can state the next proposition, we recall some basic facts about lax symmetric
monoidal functors. Let C and D be symmetric monoidal ∞-categories. In the notation of
[Lura], a map

C⊗ //

##

D⊗

zz
N(Fin∗)

is lax symmetric monoidal if it sends inert maps to inert maps. Let Funlax(C⊗,D⊗) ⊂
FunN(Fin∗)(C⊗,D⊗) be the full subcategory consisting of lax symmetric monoidal functors.

Let Fininj
∗ denote the subcategory of Fin∗ spanned by all objects together with those mor-

phisms f : 〈m〉 → 〈n〉 such that |f−1(i)| ≤ 1 for 1 ≤ i ≤ n. We say that F ∈ Funlax(C⊗,D⊗)

is unital if F sends coCartesian edges over Fininj
∗ to coCartesian edges.

The following lemma is an easy application of [AFT17, Lemma 2.16]:

Lemma 3.24. Let B be a small symmetric monoidal ∞-category that admits finite colimits
and such that the symmetric monoidal structure for B distributes over finite colimits. Let
M be a (locally small) symmetric monoidal ∞-category that admits finite colimits. Let
i : B → M be fully faithful symmetric momoidal left exact functor. Then there exists a
unital lax symmetric monoidal functor i⊗\ : M → Ind(B) such that the underlying functor

from M to Ind(B) is the restriction of the Yoneda embedding.

Proof. We are going to apply [AFT17, Lemma 2.16] to the case V = Ind(B). First note that
[AFT17, Lemma 2.16] gives a unital lax symmetric monoidal functor if conditions (1)-(4) of
the lemma are satisfied. Conditions (1) and (3) follow from [Lura, Theorem 4.8.1.13]. Since
i is symmetric monoidal, we have i(1B) ∼= 1M. Since i is fully faithful, the functor

B/1B → B/1M
is an equivalence and thus final. This gives condition (4). To prove condition (2), we shall
show that, for M ∈M, BM is filtered (and in particular sifted). Indeed, let ρ : K → BM be
a finite diagram. Since B admits finite colimits and i preserves colimits, ρ can be extended
to a colimit diagram ρ : KB → BM . �
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Corollary 3.25. Let (Ci)i∈I be a collection of symmetric monoidal compactly generated
∞-categories and let F be an ultrafilter on the set I. The map

m :
∏
F
Ci −→

∏ω

F
Ci

is a unital lax symmetric monoidal functor.

Proof. Set i : B →M to be the inclusion∏
F
Cωi →

∏
F
Ci

in Lemma 3.24. �

Remark 3.26. The functor m is in fact symmetric monoidal, not just lax. Since we do not
need this fact, we shall not prove it here.

In certain cases, collections of adjunctions between compactly generated ∞-categories
give rise to adjunctions of compactly generated ultraproducts.

Lemma 3.27. If fi : Ci � Di : gi is a collection of adjunctions between compactly generated
∞-categories indexed by I such that the left adjoints preserve compact objects, then there
exists an induced adjunction ∏ω

Ffi :
∏ω
FCi

// ∏ω
FDi : gFoo

for any ultrafilter F on I such that the following diagram commutes:∏
FCi

∏
Ffi //

m

��

∏
FDi∏

Fgi

oo

m

��∏ω
FCi

∏ω
Ffi // ∏ω

FDi.gF
oo

Proof. By assumption and Lemma 3.17∏
F
fωi :

∏
F
Cωi −→

∏
F
Dωi

preserves finite colimits, so
∏ω
Ffi preserves all colimits. The existence of the right adjoint

gF follows.
Let [Ti] ∈

∏
FCωi and [di] ∈

∏
FDi. There are equivalences

Map∏ω
FCi([Ti], gF (m([di]))) ' Map∏ω

FDi((
∏
F
fi)([Ti]),m([di]))

' Map∏
FDi

([fi(Ti)], [di])

' Map∏
FCi([Ti], [gi(di)])

' Map∏ω
FCi([Ti],m[gi(di)]).

The commutativity of the other square follows from the naturality of m. �

Lemma 3.28. Let (Ci)i∈I and (Di)i∈I be collections of symmetric monoidal compactly
generated ∞-categories and let (fi)i∈I be a collection of symmetric monoidal functors that
preserve colimits and compact objects. The compactly generated ultraproduct of the collection
(fi)i∈I ∏ω

F
fi :
∏ω

F
Ci →

∏ω

F
Di

is a symmetric monoidal functor that preserves colimits and compact objects.
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Proof. Restricting
∏ω
Ffi to compact objects gives the functor∏

F
fωi :

∏
F
Cωi →

∏
F
Dωi ,

which is symmetric monoidal by Lemma 3.21 and preserves finite colimits by Part (5) of
Lemma 3.17. Applying Ind(−) to this symmetric monoidal functor yields

∏ω
Ffi, which is

symmetric monoidal by [Lura, Corollary 4.8.1.13]. �

Note that for c ∈
∏ω
FCi a compact object, we have an equivalence c ' [ci] for some

(ci) ∈
∏
ICωi .

Lemma 3.29. Let c, d ∈
∏ω
FCi be compact objects such that c ' [ci] and d ' [di] with

ci, di ∈ Cωi , then there is an equivalence

Map(c, d) '
∏
F

Map(ci, di),

where the ultraproduct on the right is computed in the∞-category of spaces. The same result
holds for mapping spectra in case the categories are stable.

Proof. Because c and d are compact, we may compute the mapping space in the∞-category
(
∏ω
FCi)ω '

∏
FCωi . The result then follows from Proposition 3.12 and Corollary 3.16. �

Lemma 3.30. The compactly generated ultraproduct of fully faithful functors between com-
pactly generated ∞-categories is fully faithful.

Proof. The result follows from Corollary 3.15 and the fact that Ind preserves fully faithful
functors by [Lur09, Proposition 5.3.5.11(1)]. �

3.4. Protoproducts of compactly generated ∞-categories. In this subsection we con-
struct a variation of the compactly generated ultraproduct that takes into account filtrations
on compactly generated ∞-categories.

Definition 3.31. A compact filtration (C, F∗) of a compactly generated ∞-category C is a
sequence of fully faithful subcategories (closed under equivalences and retracts)

F0C // F1C // F2C // . . . // Cω

over C such that

(1) the initial object ∅ is in F0C
(2) colimFkC ' Cω
(3) there exists a function α : N→ N such that, for a diagram of the form c← e→ d in

FkC, the pushout

c
∐
e

d ∈ Cω

lies in Fα(k)C.

If (C, F∗) is a compact filtration, C is stable, and for c ∈ FkC

Σ−1c ∈ Fα(k)C,
then we call the compact filtration a stable compact filtration. If (C, F∗) is a compact
filtration, C is symmetric monoidal, the tensor unit of C is contained in F0C, and for c, d ∈
FkC

c⊗ d ∈ Fα(k)C,
then we call the compact filtration a symmetric monoidal compact filtration.
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Remark 3.32. By [Lur09, Proposition 4.4.2.2], if a function α exists for the pushout then
this implies the existence of such a function for any finite diagram category.

Definition 3.33. A collection of∞-categories equipped with (stable) (symmetric monoidal)
compact filtrations is a (stable) (symmetric monoidal) filtered collection if there is a single
function α that satisfies the conditions of the definition for each of the compact filtrations.

Definition 3.34. Let F be an ultrafilter on I. We define the protoproduct of a filtered
collection of compactly generated ∞-categories (Ci, Fi,∗)i∈I to be∏[

F (Ci, Fi,∗) = Ind colimk

∏
FFi,kCi.

Lemma 3.35. There is an equivalence of ∞-categories

(
∏[

F
(Ci, Fi,∗))ω ' colimk

∏
F
Fi,kCi.

Proof. This follows from the fact that

colimk

∏
F
Fi,kCi

is idempotent complete and has finite colimits by Remark 3.32. �

Example 3.36. The compactly generated ultraproduct is the special case of the protoprod-
uct for which Fi,jCi = Cωi for all j.

Lemma 3.37. Let (Ci, Fi,∗) be a filtered collection of compactly generated ∞-categories,
then there is a fully faithful functor

ι :
∏[
F (Ci, Fi,∗) �

� // ∏ω
FCi .

Proof. For the categories of compact objects this follows from Corollary 3.15 and Ind pre-
serves fully faithful functors by [Lur09, Proposition 5.3.5.11(1)]. �

Lemma 3.38. The protoproduct of a (stable) (symmetric monoidal) filtered collection of
compactly generated∞-categories (Ci, Fi,∗)i∈I is compactly generated (and stable) (and sym-
metric monoidal).

Proof. The ∞-category

colimk

∏
F
Fi,kCi

is a subcategory of
∏
FCωi that is closed under finite colimits and retracts by Remark 3.32.

By Lemma 3.37, the natural inclusions induce the fully faithful functor∏[
F (Ci, Fi,∗)

ι // ∏ω
FCi.

Since the target is symmetric monoidal by Lemma 3.23, [Lura, Proposition 2.2.1.1] implies

that it suffices to show that
∏[
F (Ci, Fi,∗) is closed under the symmetric monoidal structure

on
∏ω
FCi. But this follows from the assumptions on the filtrations Fi,∗.

From the characterization of stable∞-categories in [Lura, Corollary 1.4.2.27(2)], stability
follows from the fact that desuspension maps

colimk

∏
F
Fi,kCi

to itself and thus desuspension is an equivalence

Σ−1 : colimk

∏
F
Fi,kCi

'−→ colimk

∏
F
Fi,kCi.

�
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Definition 3.39. Let (Ci, Fi,∗)i∈I and (Di, Gi,∗)i∈I be filtered collections of compactly
generated ∞-categories. A collection of colimit preserving functors

(fi : Ci → Di)i∈I
is called a collection of filtration preserving functors if there exists a single function β : N→ N
such that

fi(Fi,kCi) ⊆ Gi,β(k)Di
for all i and all k.

A collection of filtration preserving functors (fi : Ci → Di) induces a functor∏[

F
fi :
∏[

F
(Ci, Fi,∗)→

∏[

F
(Di, Gi,∗).

Lemma 3.40. A collection of fully faithful filtration preserving functors (fi : Ci ↪→ Di)
induces a fully faithful functor∏[

F
fi :
∏[

F
(Ci, Fi,∗) ↪→

∏[

F
(Di, Gi,∗).

Proof. Combining Lemma 3.30 and Lemma 3.37, we have a commutative diagram∏[
F (Di, Gi,∗) �

� // ∏ω
FDi

∏[
F (Ci, Fi,∗)

OO

� � // ∏ω
FCi
?�

OO

in which the horizontal arrows and right vertical arrow are fully faithful. This implies that
the left arrow is fully faithful. �

Proposition 3.41. Let (Ci, Fi,∗Ci)i∈I and (Di, Gi,∗Di)i∈I be filtered collections of compactly
generated∞-categories and assume that we have a collection of filtration preserving functors

(fi : Ci −→ Di)i∈I ,
then the protoproduct of these functors∏[

F
fi :
∏[

F
(Ci, Fi,∗) −→

∏[

F
(Di, Gi,∗)

preserves colimits and has a right adjoint g
Fi,∗
Gi,∗

that preserves filtered colimits.

Proof. It suffices to prove that the functor

(
∏[

F
fi)

ω : (
∏[

F
(Ci, Fi,∗))ω = colimk

∏
F
Fi,kCi → colimk

∏
F
Gi,kDi

preserves finite colimits. Since it clearly preserves the initial object, it is enough to show
that it preserves pushouts. Let K be the span diagram. Since K is compact, there exists a
k and U ∈ F such that there are factorizations∏

UFi,kCi

��∏
FFi,kCi

��
K //

88

AA

colimk

∏
FFi,kCi.
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By the definition of a filtered collection, there is a factorization

KB // ∏
UFi,α(k)Ci // ∏

UCωi

K //

OO

∏
UFi,kCi

OO

and the map KB →
∏
UCωi is the colimit. The canonical map∏

U
Fi,α(k)Ci → colimk

∏
F
Fi,kCi

preserves the finite colimits that exist by Lemma 3.17. Also, the map∏
U
fi :
∏

U
Fi,α(k)Ci →

∏
U
Gi,β(α(k))Di

preserves colimits that exist by assumption. Thus the composite

KB →
∏

U
Fi,α(k)Ci →

∏
U
Gi,β(α(k))Di → colimk

∏
F
Gi,kDi

is the pushout diagram and
∏[
Ffi sends pushouts to pushouts. By [Lur09, Proposition

5.5.7.2], since
∏[
Ffi sends compact objects to compact objects, the right adjoint g

Fi,∗
Gi,∗

pre-

serves filtered colimits. �

Remark 3.42. When the compact filtrations are clear from context, we will just write g for

the right adjoint to
∏[
Ffi.

Corollary 3.43. With notation as in Proposition 3.41, if the categories are stable then

g
Fi,∗
Gi,∗

preserves all colimits.

Example 3.44. Let (Ci, Fi,∗)i∈I be a filtered collection of compactly generated∞-categories
and let (Ci)i∈I be the same categories with the trivial filtration of Example 3.36. In this case
the identity maps are a collection of filtration preserving functors (Ci, Fi,∗)→ Ci inducing

ι :
∏[
F (Ci, Fi,∗) �

� // ∏ω
FCi.

We will always refer to the right adjoint to this map as nFi,∗ or just n when the filtration is
clear from context.

Corollary 3.45. With the notation of Proposition 3.41, both the solid square and the dashed
square commute ∏[

F (Ci, Fi,∗)
∏[
Ffi

��

ι // ∏ω
FCin

oo

∏ω
Ffi

��∏[
F (Di, Gi,∗)

g
Fi,∗
Gi,∗

OO

ι // ∏ω
FDi

g

OO

n
oo

and g
Fi,∗
Gi,∗

preserves filtered colimits.

Proof. Each of these adjunctions is a special case of Proposition 3.41. The horizontal ad-
junctions are a special case by Example 3.36. The solid diagram commutes by naturality
and the commutativity of the dashed diagram follows. �
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Lemma 3.46. Let (Ci, Fi,∗)i∈I be a filtered symmetric monoidal collection of compactly
generated ∞-categories. The protoproduct∏[

F
(Ci, Fi,∗)

is a full symmetric monoidal subcategory of
∏ω
FCi with unital lax symmetric monoidal right

adjoint n.

Proof. By Lemma 3.37, the natural inclusions induce the fully faithful functor∏[
F (Ci, Fi,∗)

ι // ∏ω
FCi .

Since the target is symmetric monoidal by Lemma 3.23, it suffices to show that
∏[
F (Ci, Fi,∗)

is closed under the symmetric monoidal structure on
∏ω
FCi, see [Lura, Proposition 2.2.1.1].

This follows from the assumptions on the filtrations Fi,∗.

Since ι :
∏[
F (Ci, Fi,∗) →

∏ω
FCi is symmetric monoidal, the right adjoint n inherits a

natural structure of a lax symmetric monoidal functor by [Lura, Corollary 7.3.2.7]. Finally,
n preserves units because the tensor unit of Ci is contained in Fi,0Ci for all i ∈ I. �

Corollary 3.47. Let (Ci, Fi,∗)i∈I and (Di, Gi,∗)i∈I be filtered symmetric monoidal collec-
tions of compactly generated ∞-categories and let (fi)i∈I be a filtration preserving collection
of symmetric monoidal functors. The protoproduct

∏[
F (Ci, Fi,∗)

∏[
Ffi // ∏[

F (Di, Gi,∗)

is a symmetric monoidal functor with unital lax symmetric monoidal right adjoint g.

Proof. By Corollary 3.45, we have a commutative diagram∏ω
FCi

∏ω
Ffi // ∏ω

FDi

∏[
F (Ci, Fi,∗) ∏[

Ffi

//

ι

OO

∏[
F (Di, Gi,∗).

ι

OO

By Lemma 3.28, the top arrow is symmetric monoidal. Since the diagram commutes and
the vertical arrows are fully faithful and symmetric monoidal by Lemma 3.46, the bottom
arrow must be symmetric monoidal.

The right adjoint g is unital lax symmetric monoidal by the proof of the same property
for the right adjoint n in Lemma 3.46. �

Corollary 3.48. Let (Ci, Fi,∗) be a filtered symmetric monoidal collection of compactly
generated ∞-categories, then the composite∏

I
Ci

[−]F−→
∏
F
Ci

m−→
∏ω

F
Ci

n−→
∏[

F
(Ci, Fi,∗)

is lax symmetric monoidal and preserves the unit. In particular, the composite sends com-
mutative monoids to commutative monoids.

Proof. This follows from Lemma 3.21, Corollary 3.25, and Lemma 3.46. �
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3.5. Filtrations on module categories. In this subsection and the next, we study three
different filtrations on the ∞-category of modules over a ring spectrum that will play an
important role later on. These three filtrations are stable compact filtrations in the sense
of the previous subsection.

• The cell filtration, in which a compact module is in filtration k if and only if it can
be built out of at most k cells.

• The cell-dimension filtration, where both the number of cells and the dimension of
the cells are bounded.

• The Pic-filtration, in which a compact module is in filtration k if and only if it can
be built out of at most k invertible modules.

Informally speaking, the difference between the first and third filtration comes from the
fact that invertible objects can, in general, have many cells. This is the case, for example,
in the ∞-category of E(n)-local spectra at small primes.

We will begin with some recollections regarding module categories. Let R be an E1-ring
spectrum and let ModR be the stable ∞-category of modules over R. A cell is an object
of the form ΣnR for some n ∈ Z. For any n ∈ N ∪ {∞}, if R is an En-ring spectrum,
then ModR is En−1-monoidal. If n > 1, then the corresponding monoidal structure will be
denoted by ⊗ = ⊗R. Moreover, ModR is compactly generated by the ⊗-unit R. In fact, this
property characterizes module categories of ring spectra by the following derived version of
Morita theory, see [SS03, Theorem 3.3.3] and [Lura, Theorem 7.1.2.1].

Theorem 3.49 (Schwede–Shipley). If C is a compactly generated stable ∞-category with
compact generator P , then there is an equivalence

HomC(P,−) : C ' // ModEndP

with inverse given by − ⊗EndP P . Moreover, if C is symmetric monoidal with unit P and
with the property that ⊗ commutes with colimits in each variable, then P is an E∞-algebra
and this is an equivalence of symmetric monoidal ∞-categories.

We can now construct three filtrations on the∞-category of modules over a ring spectrum
that we will use to build three different types of protoproducts.

Definition 3.50. Let CellR be the filtration on ModR in which CellR,k ModR consists of
retracts of objects that can be built out of at most k cells. For a collection of module
categories (ModRi)i∈I equipped with this filtration and an ultrafilter F on I, we will denote
the protoproduct by ∏[

F
ModRi =

∏[

F
(ModRi ,CellRi).

We will simply refer to this as the protoproduct of the module categories.

There is a finer filtration on ModR given by bounding both the number and the dimension
of cells. Every compact R-module is a retract of a finite cell R-module. The dimension of
a finite cell R-module is the maximum of the absolute value of the dimension of the top
cell and the absolute value of the dimension of the bottom cell. The kth filtration step is
given by R-modules that are retracts of finite cell R-modules for which the maximum of the
dimension and number of cells is bounded by k.

Definition 3.51. Let DimCellR be the filtration on ModR described above given by the
maximum of the number of cells and the dimension. For a collection of module categories
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(ModRi)i∈I equipped with this filtration and an ultrafilter F on I, we will denote the
protoproduct by ∏[[

F
ModRi =

∏[

F
(ModRi ,DimCellRi).

We will call this the bounded protoproduct of the module categories.

If R is an E∞-ring spectrum, then the ∞-category ModR is symmetric monoidal and we
can define the Picard groupoid Pic(R) ⊆ ModR of R to be the ∞-groupoid of invertible
objects in ModR. In fact, Pic is a functor from the ∞-category of symmetric monoidal
∞-categories and symmetric monoidal functors to Top. By [MS16, Proposition 2.2.3], the
functor Pic preserves filtered colimits and limits, therefore we have the following lemma:

Lemma 3.52. The functor Pic preserves ultraproducts.

Note that every suspension of R is invertible. The invertible objects can be used to
construct a third filtration on ModR, which is coarser than CellR.

Definition 3.53. The Pic-filtration PicCellR on ModR is defined analogously to the cell
filtration in Definition 3.50, but allowing arbitrary objects in Pic(R) as cells instead of
suspensions of R. For a collection of module categories (ModRi)i∈I equipped with this
filtration and an ultrafilter F on I, we will denote the protoproduct by∏Pic

F
ModRi =

∏[

F
(ModRi ,PicCellRi).

We will call this the Pic-generated protoproduct of the module categories.

Remark 3.54. More generally, we could construct a filtration in which the cells are taken
from any submonoid of Pic(R) which is closed under suspensions. The filtrations CellR and
PicCellR are the minimal and maximal cases, respectively.

Remark 3.55. Assume that (Ci)i∈I is a collection of symmetric monoidal compactly gener-
ated ∞-categories with compact units. All three of the filtrations make sense in this more
general setting. The obvious analogues of the cell filtration and cell-dimension filtration
reduce to constructions in module categories as they only see the cellular objects. However,
the Pic-filtration is interesting. Because the unit is compact, the invertible objects are com-
pact. Thus we may define PicCell(Ci) to be the filtration with kth filtration step retracts of
objects built out of at most k invertible objects and define∏Pic

F
Ci =

∏[

F
(Ci,PicCell(Ci)).

Lemma 3.56. Let (ModRi)i∈I be a collection of module categories over E∞-rings, then

Pic(
∏Pic

F
ModRi) '

∏
F

Pic ModRi .

Proof. Since invertible objects of ModRi are compact, we have Pic ModRi = Pic ModωRi . It
follows from the definition that

PicCellRi,0 ModRi ⊇ Pic ModRi .

Thus the right hand side is contained in the left hand side.

To prove the other inclusion, first note that the unit of
∏Pic
F ModRi is compact, so all

invertible objects in this ∞-category are compact as well. Therefore, it suffices to consider

Pic(colimk

∏
F

PicCellRi,k ModRi),
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where PicCellRi,k ModRi is the k-th filtration step in the Pic-filtration on ModRi . However,
this is a subspace of Pic

∏
F ModωRi , which in turn is the same as

∏
F Pic ModRi , as Pic

preserves ultraproducts by Lemma 3.52. �

3.6. Protoproducts of module categories. We analyze the protoproducts associated
to the filtrations of the previous section. Let (Ri)i∈I be a collection of E∞-ring spectra.
The identity maps on the ∞-categories (ModRi)i∈I induce filtration preserving symmetric
monoidal functors of stable symmetric monoidal filtered collections

(ModRi ,DimCellRi) −→ (ModRi ,CellRi) −→ (ModRi ,PicCellRi)

inducing, by Corollary 3.47, symmetric monoidal functors

∏[[
F ModRi

∏[
F IdModRi // ∏[

F ModRi

∏[
F IdModRi // ∏Pic

F ModRi .

By Proposition 3.41, these functors are left adjoints. By Corollary 3.45, we have a com-
mutative diagram in which the left adjoints commute with the left adjoints and the right
adjoints commute with the right adjoints

(3.57)
∏ω
F ModRi

n
uu

n

��

n

))∏[[
F ModRi

ι
55

∏[
F IdModRi

//
∏[
F ModRi ∏[

F IdModRi

//

ι

OO

oo ∏Pic
F ModRi .

oo
ι

ii

The right adjoints are unital lax symmetric monoidal functors. Since the functors ι are fully
faithful functors with right adjoints, the ∞-categories on the bottom row are all localizing
subcategories of

∏ω
F ModRi . We will explicitly describe the right adjoints as colocalizations.

In
∏ω
F ModRi there are three natural notions of “homotopy groups”. Let R = [Ri] ∈∏ω

F ModRi be the unit. For [ni] ∈ ZF =
∏
FZ, let

Σ[ni]R = [ΣniRi] ∈
∏ω

F
ModRi .

Definition 3.58. Let f : M → N be a map in
∏ω
F ModRi , then

• we say that f is a π[∗]-equivalence if [Σ[ni]R,M ] −→ [Σ[ni]R,N ] is an isomorphism

for all [ni] ∈ ZF .
• we say f is a π∗-equivalence if [ΣnR,M ] −→ [ΣnR,N ] is an isomorphism for all
n ∈ Z ⊂ ZF .

• we say that f is a πPic-equivalence if [L,M ] −→ [L,N ] is an isomorphism for all
objects L ∈ Pic(

∏ω
F ModRi).

Proposition 3.59. The protoproduct
∏[
F ModRi is generated by (Σ[ni]R)[ni]∈

∏
FZ and is the

colocalization of
∏ω
F ModRi with respect to the π[∗]-equivalences. The bounded protoproduct∏[[

F ModRi is generated by (ΣnR)n∈Z and is the colocalization of
∏ω
F ModRi with respect

to the π∗-equivalences. The Pic-generated protoproduct
∏Pic
F ModRi is generated by L ∈

Pic(
∏ω
F ModRi) and is the colocalization of

∏ω
F ModRi with respect to the πPic-equivalences.

Proof. The first part of the claim in each of these sentences implies the second part of the
claim, because generators detect equivalences. We will show the claim for the protoproduct,

the argument for the bounded protoproduct
∏[[
F ModRi and Pic-generated protoproduct∏Pic

F ModRi being similar.
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By Lemma 3.38,
∏[
F ModRi is compactly generated by its subcategory of compact objects,

which by construction is colimk

∏
F CellRi,k ModRi . This ∞-category contains Σ[ni]R for

all [ni] ∈ ZF , so it suffices to show that the thick subcategory Thick((Σ[ni]R)[ni]∈
∏
FZ)

generated by these objects coincides with colim
∏
F CellRi,k ModRi . To that end, consider

an arbitrary non-trivial object X ∈ colim
∏
F CellRi,k ModRi , so that there exists k ≥ 1

with X ∈
∏
F CellRi,k ModRi . By construction of the filtrations CellRi this means that X

is a retract of a complex Y built from at most k cells in each coordinate i ∈ I. Therefore,
it is possible to find a cell Σ[ni]R and a cofiber squence

Σ[ni]R // Y ′ // Y,

such that the compact object Y ′ is contained in∏
F

CellRi,k−1 ModRi ⊂ Thick((Σ[ni]R)[ni]∈
∏
FZ).

An induction on the number k of cells then finishes the proof. �

There is another way to describe the Pic-generated protoproduct that is conceptually
useful. We say that a symmetric monoidal compactly generated stable ∞-category C is a
Pic-compactly generated ∞-category if

LocC(Pic(C)) = C.

Recall that we assume that the unit is compact in a symmetric monoidal compactly gen-
erated ∞-category, thus Pic(C) ⊂ Cω. Let CatPic

∞ be the full subcategory of Cat⊗,ω,st∞ (the
∞-category of stable symmetric monoidal compactly generated ∞-categories) spanned by
the Pic-compactly generated ∞-categories. Given ∞-categories C and D in Cat⊗,ω,st∞ such
that LocC(Pic(C)) = C, the canonical map LocD(Pic(D))→ D induces an equivalence

MapCat⊗,ω,st∞
(C,LocD(Pic(D)))

'−→ MapCat⊗,ω,st∞
(C,D).

Thus the functor Loc Pic exhibits CatPic
∞ as a colocalization of Cat⊗,ω,st∞ .

Corollary 3.60. Let (Ri)i∈I be a collection of E∞-ring spectra and let F be an ultrafilter
on I. The Pic-generated protoproduct ∏Pic

F
ModRi

is the ultraproduct in the ∞-category of Pic-compactly generated ∞-categories.

Proof. The embedding

U : CatPic
∞ ↪→ Cat⊗,ω,st∞

admits a right adjoint given by

C 7→ LocC(Pic(C)) ' Ind ThickC Pic(C),

which preserves filtered colimits.
Thus for a collection of Pic-compactly generated∞-categories Ci, we have an equivalence∏

F
Ci ' Loc(Pic(

∏ω

F
U(Ci))).

By Proposition 3.59, this is equivalent to
∏Pic
F ModRi when Ci = ModRi . �
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Corollary 3.61. Let (Ri)i∈I be a collection of ring spectra which are periodic of the same
period, then the adjunction of Diagram 3.57 induces an equivalence∏[

F ModRi
' // ∏[[

F ModRi

for any ultrafilter F on I.

Proof. As above, let R = [Ri], then this is a consequence of the fact that Σ[ni]R ' ΣkR for
some k between 0 and the periodicity. This follows from the fact that ΣniRi ' ΣkiRi for
ki between 0 and the period. But now since the ki’s are bounded, Lemma 2.3 implies that
precisely one value can be supported on the ultrafilter. �

The next example highlights the difference between the protoproduct and the compactly
generated ultraproduct.

Example 3.62. Suppose F is a non-principal ultrafilter on I = N. Let R = Ri = HZ. We
will construct two objects in

∏ω
F ModR and a map between them that is a π[∗]-equivalence

but not an equivalence.

The first object is Y = [
⊕i

l=0 ΣlR], which is an object of
∏
F ModωR ⊂

∏ω
F ModR.

The second object will be defined on a filtered diagram. Let A = (Ai)i∈I be a collection
of subsets of N such that Ai ⊂ {1, . . . , i} and maxi |Ai| < ∞. We can define an order on
all such collections by defining A ≤ B if ∀i ∈ N, Ai ⊂ Bi. Denote the poset of all such
collections by P. It follows from the definition that this is a directed poset.

For A ∈ P, define

X(A) = [
⊕
l∈Ai

ΣlR]i∈I .

This construction extends to a functor

X : P→
∏
F

ModωR,

and, since P is directed, this gives us an object in
∏ω
F ModR.

There is a canonical map f : X → Y in
∏ω
F ModR induced by the canonical map of

compact objects X(A)→ Y . The map f is a π[∗]-equivalence, but not an equivalence.
To see that it is a π[∗]-equivalence, we must show that

[Σ[ni]R,X]→ [Σ[ni]R, Y ]

is an isomorphism for all [ni] ∈ ZF . But

[Σ[ni]R,X] ∼= colim
A∈P

[Σ[ni]R,X(A)]

and this is isomorphic to [Σ[ni]R, Y ] because Σ[ni]R has one cell.
To see that it is not an equivalence, note that Y is compact, so an inverse X → Y to f

would need to factor through a finite stage. Thus Y would be a retract of X(A) for some
A ∈ P, but this is impossible as can be seen by applying π[i]i∈N .

Now we prove the main result of this subsection.

Theorem 3.63. Let (Ri)i∈I be a collection of E1-ring spectra. Let F be an ultrafilter on I,
then there is a canonical equivalence∏[[

F
ModRi ' Mod∏

FRi
,
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where
∏
FRi denotes the ultraproduct of the spectra (Ri)i∈I in the ∞-category Sp. In addi-

tion, if the ring spectra Ri are E∞-rings, then the equivalence is an equivalence of symmetric
monoidal ∞-categories.

Proof. In order to identify the symmetric monoidal structures in the case that the ring spec-

tra are E∞, we will first construct a symmetric monoidal comparison functor Φ:
∏[[
F ModRi →

Mod∏
FRi

. To this end, note that forming ultraproducts induces a functor∏
F :
∏
F ModωRi

// Sp,

which factors through Mod∏
FRi

because
∏
F is lax symmetric monoidal. The universal

extension of this functor to
∏ω
F ModRi is unital lax symmetric monoidal, so upon restriction

to
∏[[
F ModRi we obtain a unital lax symmetric monoidal functor

Φ:
∏[[
F ModRi → Mod∏

FRi

between symmetric monoidal ∞-categories.

We now claim that Φ is in fact symmetric monoidal. Indeed, fix an object M ∈
∏[[
F ModRi

and consider the full subcategory CM of
∏[[
F ModRi of all objects N such that Φ(M ⊗N) '

Φ(M)⊗ Φ(N) via the given lax structure on Φ. Since Φ is unital, the unit 1 of
∏[[
F ModRi

belongs to CM . Moreover, CM is closed under colimits, so CM =
∏[[
F ModRi as

∏[[
F ModRi

is compactly generated by 1 by Proposition 3.59. In other words, as M runs through the

objects of
∏[[
F ModRi , we see that Φ is symmetric monoidal.

Invoking Morita theory (Theorem 3.49), it therefore remains to identify the spectrum
End(1). Since the canonical functor∏[[

F ModRi // ∏ω
F ModRi

is symmetric monoidal and fully faithful by Lemma 3.46, it sends 1 to the unit [Ri] in∏ω
F ModRi , and we get an equivalence

End(1) ' End∏ω
F ModRi

([Ri]).

This latter spectrum can be identified as

End∏ω
F ModRi

([Ri]) ' End∏
F ModωRi

([Ri]) '
∏
F

EndModRi
(Ri) '

∏
F
Ri

by Lemma 3.29 since [Ri] is compact. �

Remark 3.64. Given a collection of E1-ring spectra Ri and Ri-module homomorphisms
fi : Mi → Ni, then their ultraproduct∏

Ffi :
∏
FMi

// ∏
FNi

is canonically an
∏
FRi-module homomorphism. To see this, it suffices to observe that the

ultraproduct is composed of an infinite product and a filtered colimit in Sp, for which the
claim is easily verified.

We end this subsection with three examples and an application to chromatic homotopy
theory.
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Example 3.65. Let F be an ultrafilter on the set I. Consider the bounded protoproduct∏[[

F
ModHZ .

If F is principal on the set {i}, then this bounded protoproduct is equivalent to ModHZ.
Now assume that F is non-principal. In this case, Proposition 3.59 provides an equivalence∏[[

F
ModHZ ' ModHZF ,

where ZF is the ring discussed in Example 2.14.

Example 3.66. Let GrAb be the 1-category of graded abelian groups and let F be an
ultrafilter on the set of primes P. Since the Eilenberg–MacLane functor H : GrAb → Sp
preserves products and filtered colimits, there is a natural equivalence∏

F
(HMp) ' H(

∏
F
Mp)

for any collection of abelian groups (Mp)p∈P . In particular, let Rp = HFp[x] with x of degree
2. Because of the grading, the ultraproduct of the Rp’s recovers the Eilenberg–MacLane
spectrum of a graded version of the protoproduct of Example 2.16.

Example 3.67. Let F be a non-principal ultrafilter on P and let Sp(p) be the ∞-category
of p-local spectra, then there is a natural equivalence∏[[

F
Sp(p) ' ModHZ(F)

,

where Z(F) is the Q-algebra
∏
FZ(p) (similar to Example 2.12). It follows from Proposi-

tion 3.59 that ∏[[

F
Sp(p) ' Mod∏

FS
0
(p)
,

and it remains to give a more explicit description of
∏
FS

0
(p). Since the homotopy groups of

S0
(p) are zero in degrees [1, 2p− 4], we obtain an equivalence∏

F
S0

(p) '
∏
F
HZ(p) ' HZ(F).

Finally, we apply several of the ideas of this subsection to the case that we fix a prime p
and consider the protoproduct of the categories of modules of K(n) at an ultrafilter on the
natural numbers.

Theorem 3.68. Let F be a non-principal ultrafilter on the natural numbers N, let PK(n) be
2-periodic Morava K-theory of height n at the prime p, and let PHFp be 2-periodic singular
cohomology with coefficients in Fp. There is a natural equivalence∏[

F ModPK(n)
' // ModPHFp

of compactly generated stable ∞-categories.

Proof. Because all theories involved are 2-periodic, Corollary 3.61 and Theorem 3.63 give
an equivalence ∏[

F
ModPK(n) ' Mod∏

FPK(n) .

We will produce an equivalence of ring spectra∏
F
PK(n) ' PHFp.
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Note that there is a map of E1-algebras

K(n)→ PK(n)

inducing a map of E1-algebras ∏
F
K(n)→

∏
F
PK(n).

As the periodicity of π∗K(n) strictly increases as the height n increases, we see that

π∗(
∏
F
K(n))

is concentrated in degree 0 and π0(
∏
FK(n)) ∼= Fp, thus∏
F
K(n) ' HFp.

Recall that a ring spectrum R ∈ Sp is called a field object if π∗R is a graded field in the
algebraic sense. As a result of the nilpotence theorem, Hopkins and Smith [HS98] have
classified the minimal field objects in Sp: They are the Eilenberg–MacLane spectra HFp as
well as the Morava K-theories K(n) for all n and p.

Since ultraproducts commute with homotopy groups, it follows that
∏
FPK(n) ∈ Sp is

a field object. Since it is an HFp-algebra and π2i

∏
FPK(n) ∼= Fp, there is an equivalence

of ring spectra ∏
F
PK(n) ' PHFp.

�

Remark 3.69. We would like to point out one curious consequence of this result: In the
course of the proof we produced equivalences of ring spectra of the form

∏
FPK(n) ' PHFp

and
∏
FK(n) ' HFp. However, PK(n) and K(n) are not E2 for any n > 0 or p. We

might therefore interpret this as saying that PK(n) and K(n) become more commutative
as n→∞, without moving through the usual hierarchy of Em-operads.

4. Formality

Let GrAb be the symmetric monoidal category of Z-graded abelian groups with grading
preserving maps. The functor

π∗ : Sp→ GrAb

admits a right inverse

H : GrAb→ Sp,

which commutes with products, called the generalized Eilenberg–MacLane spectrum func-
tor. Note that H is lax symmetric monoidal. As a lax functor H induces a functor from
CAlg(GrAb) to CAlg(Sp) which we will still denote by H. For any∞-category D an object
in CAlg(Sp)D is called formal if it is in the image of

HD : CAlg(GrAb)D → CAlg(Sp)D.

Let En,p be a Morava E-theory at height n and the prime p. Let E⊗•+1
n,p be the Amitsur

complex of the unit map S0 → En,p, defined carefully in Section 4.2. The goal of this section
is to prove that the cosimplicial spectrum∏

F

(
E⊗•+1
n,p

)
∈ CAlg(Sp)∆.

is formal. This is the first step in showing that the distinction between spectral and algebraic
data disappears at a non-principal ultrafilter.
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To explain the idea of the proof first consider the formality of

En,F =
∏
F

(
En,p

)
.

The E∞-ring En,p admits an action of Cp−1 such that the induced action on π2jEn,p is
of weight j. Decomposing En,p according to weights, we deduce that any non-trivial k-
invariant of En,p can only appear in degrees divisible by 2(p − 1). As the prime p goes to
infinity the non-trivial k-invariants appear sparser and sparser and in the limit they do not
appear at all.

To apply this idea to
∏
FE
⊗•+1
n,p , two issues need to be addressed:

(1) For k ≥ 2, the Cp−1 action on E⊗kn,p is not of a single weight for every homotopy
group.

(2) The formality needed in the cosimplicial case needs to include not only the formality
at every cosimplicial degree but also all of the coherence data in the diagram as well
as the algebra structure.

It turns out that the first issue disappears after replacing the Amitsur complex of the
unit map S0 → En,p by that of the map Ŝ → En,p, where Ŝ is the p-complete sphere.

To aid the reader we provide a brief outline of this section. Sections 4.1 to 4.3 give a
reduction to the Amitsur complex of Ŝ → En,p. In Section 4.1 we establish basic general
properties of the functor H. We use the arithmetic fracture square in Section 4.2 to reduce
the formality of

∏
FE
⊗•+1
n,p to the formality of a diagram built out of the rationalization of

En,p and
∏
FE
⊗Ŝ•+1
n,p . The required results regarding Q⊗En,p are proved in Section 4.3 using

Andre–Quillen obstruction theory. We are now left with the need to prove the formality of∏
FE
⊗Ŝ•+1
n,p while taking issue (2) into account.

In Section 4.4 we prove that the action of Cp−1 on
∏
FE
⊗Ŝ•+1
n,p has the desired prop-

erties. In Section 4.5 we introduce operadic tools that allow us to explore the interplay
between symmetric monoidal structures and weight decompositions. We employ these tools

in Section 4.6 to produce the weight decomposition of
∏
FE
⊗Ŝ•+1
n,p . Finally, in Section 4.7

we collect all of the results at each finite prime to obtain the formality at the non-principal
ultrafilters.

4.1. Properties of H.

Proposition 4.1. The functor H commutes with products and filtered colimits and therefore
with ultraproducts.

Definition 4.2. Let X be a spectrum. Define

X? = Hπ∗(X).

Since H and π∗ are lax monoidal functors, if R is an En-ring spectrum, then R? is an
En-ring spectrum (n =∞ is allowed).

These ring spectra behave in an algebraic way, as can be seen in the following theorem
of Schwede and Shipley ([SS03], [Lura, Section 7.1.2]). For a ring spectrum R, let C(R) be
the differential graded algebra in which the chain groups are precisely the homotopy groups
of R and the differentials are all the zero map.

Theorem 4.3. (Schwede–Shipley) Let D(Ab) be the ∞-category of chain complexes of
abelian groups and let R be an E∞-ring spectrum. There is a symmetric monoidal equiva-
lence of stable ∞-categories

ModR? ' ModC(R)(D(Ab)).
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Thus we may think about R? as a differential graded algebra.

Proposition 4.4. Let D be a small category and let

P //

��

B

��
A // C

be a pullback diagram in CAlg(GrAbD). If for every object d ∈ D, the map B(d)⊕A(d)→
C(d) is surjective, then

HD(P )→ HD(B)×HD(C) H
D(A)

is an equivalence in CAlg(SpD) and thus the pullback HD(B)×HD(C) H
D(A) is formal.

Proof. Consider the long exact sequence of homotopy groups for the pullbackHD(B)×HD(C)

HD(A). The surjectivity of the map

B(d)⊕A(d)→ C(d)

implies that the homotopy groups of the pullback are exactly the pullback of the homotopy
groups. Thus the canonical map HD(P )→ HD(B)×HD(C) H

D(A) is an equivalence.
�

Corollary 4.5. Let D be a small category and let

P

��

// B

��
A // C

be a pullback diagram in CAlg(Sp)D. Assume that (A → C) and (B → C) are formal as

objects in CAlg(Sp)D×∆1

and that for every d ∈ D and i ∈ Z the map

πi(A(d))⊕ πi(B(d))→ πi(C(d))

is surjective, then P is formal as an object in CAlg(Sp)D.

Lemma 4.6. Let D be a small category and let R ∈ CAlg(Sp)D be formal. Let(
R→ Q⊗R

)
∈ CAlg(Sp)D×∆1

be the canonical map to the rationalization, then R → Q ⊗ R is formal as an object in

CAlg(Sp)D×∆1

.

Proof. By assumption R ' HDπD∗ (R). We also have an object

(πD∗ (R)→ πD∗ (R)⊗Q) ∈ CAlg(GrAb)D×∆1

.

By the laxness of HD there is a commutative square

HDπD∗ (R) //

��

HDπD∗ (R)⊗HDQ

��
HDπD∗ (R) // HD(πD∗ (R)⊗Q),

where the right vertical map is an equivalence by the flatness of Q over π∗(S
0) and HDQ is

just HD applied to the constant diagram. Thus the fact that the bottom horizontal map is
formal implies that the top horizontal map is formal. �
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Let SpQ[0, 0] be the full symmetric monoidal subcategory of SpQ on objects whose non-
trivial homotopy groups are concentrated in degree 0. Also, let GrAbQ be the category of
graded Q-vector spaces and let Q −Mod be the symmetric monoidal category of rational
vector spaces viewed as a full subcategory of GrAb on degree 0 objects.

Lemma 4.7. The restriction of the lax symmetric monoidal functor

HD : GrAbD → SpD

to

HD
Q : GrAbDQ → SpDQ

is symmetric monoidal. Restricting further to Q − ModD induces a symmetric monoidal
equivalence

HD|Q−ModD : Q−ModD
'−→ SpQ[0, 0]D.

Proof. Both statements reduce to the case D = ∗. The first statement follows from the fact
that every Q-module is flat by using the Künneth spectral sequence. The equivalence

Q−Mod
'−→ SpQ[0, 0]

is classical. �

4.2. The reduction to the rational and p-complete cases. Let Ŝ be the p-complete
sphere spectrum and fix a non-principal ultrafilter F on I = P. In this subsection we use
the arithmetic fracture square to reduce the verification of the formality of the cosimplicial
spectrum ∏

F
E⊗•+1
n,p

to the formality of the cosimplicial spectrum∏
F
E
⊗Ŝ•+1
n,p

and the formality of the canonical map of cosimplicial spectra∏
F
Q⊗ E⊗•+1

n,p →
∏
F
Q⊗ E⊗Ŝ•+1

n,p .

Remark 4.8. The ultraproducts in this section are being taken in a variety of different cate-
gories. But all of these categories are either diagram categories or categories of commutative
algebra objects in diagram categories. Since ultraproducts commute with the forgetful func-
tor and restriction of diagrams, there should be no ambiguity regarding what is meant by
the symbol

∏
F .

Lemma 4.9. Let M be a spectrum and let f : R → S be a map of E1-spectra which is an
M -equivalence. Let A and B be right and left S-modules. The map

A⊗R B → A⊗S B
is an M -equivalence.

Proof. We first show by induction that for every k ≥ 0 the map

f⊗k : R⊗k → S⊗k

is an M -equivalence. For k = 0 it is clear. Now assume that the map R⊗k → S⊗k is an
M -equivalence. The map f⊗k+1 : R⊗k+1 → S⊗k+1 factors as f⊗k⊗ IdR : R⊗k+1 → S⊗k⊗R
followed by IdS⊗k ⊗f : S⊗k ⊗ R → S⊗k+1. The first map is an M -equivalence by the
induction hypothesis and the second by assumption.
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Now to prove the statement we need to show that the map

A⊗R B ⊗M → A⊗S B ⊗M
is an equivalence. Recalling the definition of the relative tensor product as a geometric
realization (bar construction) and using the fact that ⊗ commutes with colimits in each
variable, it is enough to show that for every k ≥ 0 the map

A⊗R⊗k ⊗B ⊗M → A⊗ S⊗k ⊗B ⊗M
is an equivalence. This is what we have shown. �

Corollary 4.10. For every k ≥ 1, the map

E⊗kn,p → E
⊗Ŝk
n,p

is an equivalence after p-completion

Proof. Recall that p-completion is localization with respect to the Moore spectrum M(p).

The map S0 → Ŝ is an M(p)-equivalence so the result follows from the previous lemma. �

Let C be a presentably symmetric monoidal ∞-category and let A → B be a map in
CAlg(C). In this situation, B may be considered as an object in CAlgA(C). Evaluating at
the object [0] ∈ ∆ gives a functor

CAlgA(C)∆ → CAlgA(C)
This functor admits a left adjoint

L : CAlgA(C)→ CAlgA(C)∆

such that L(B)([n]) ' B⊗A(n+1). We call L(B) the Amitsur complex of B over A, the
cosimplicial object

B //// B ⊗A Boo ////
//
B ⊗A B ⊗A Boooo

////
////
//
· · · .

oooooooo

By abuse of notation we give the same name to the image of L(B) under the forgetful functor

CAlgA(C)∆ → CAlg(C)∆.

We denote this image by B⊗A•+1.

Lemma 4.11. There is a pullback square in CAlg(Sp)∆

E⊗•+1
n,p

//

��

E
⊗Ŝ•+1
n,p

��
Q⊗ E⊗•+1

n,p
// Q⊗ E⊗Ŝ•+1

n,p .

Proof. Consider the diagram of cosimplicial spectra

E⊗•+1
n,p

//

��

E
⊗Ŝ•+1
n,p

��

//
(
E⊗•+1
n,p

)∧
p

��
Q⊗ E⊗•+1

n,p
// Q⊗ E⊗Ŝ•+1

n,p
// Q⊗

(
E⊗•+1
n,p

)∧
p
.

At cosimplicial degree k, the outer square is the arithmetic fracture square associated to
E⊗k+1, thus it is a pullback square. We show that the right-hand square is a pullback
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square. By Corollary 4.10 at cosimplicial degree k it is the fracture square attached to
E⊗Ŝk+1. The claim now follows from the pasting lemma. �

Corollary 4.12. There is a pullback square in CAlg(Sp)∆

∏
FE
⊗•+1
n,p

//

��

∏
FE
⊗Ŝ•+1
n,p

��∏
FQ⊗ E⊗•+1

n,p
// ∏
FQ⊗ E

⊗Ŝ•+1
n,p .

Proof. This follows from Lemma 4.11 plus the fact that ultraproducts commute with finite
limits in Sp. �

The next two theorems follow from the main results of Section 4.3 and Section 4.7.

Theorem 4.13. The canonical diagram in CAlg(Sp)∆×∆1∏
F
Q⊗ E⊗•+1

n,p →
∏
F
Q⊗ E⊗Ŝ•+1

n,p

is formal.

Proof. We prove in Corollary 4.25 that this is true at every finite prime p we are done as
Proposition 4.1 implies that the functor H commutes with ultraproducts. �

Theorem 4.14. The cosimplicial E∞-ring∏
F
E
⊗Ŝ•+1
n,p

is formal.

Proof. This is Theorem 4.48. �

Lemma 4.15. The canonical diagram in CAlg(Sp)∆×∆1∏
F
E
⊗Ŝ•+1
n,p →

∏
F
Q⊗ E⊗Ŝ•+1

n,p

is formal.

Proof. This follows from Theorem 4.14 by Lemma 4.6. �

Lemma 4.16. For every k ≥ 1, π∗(E
⊗k
n,p) is torsion-free.

Proof. It is well-known that π∗(E
⊗k
n,p) is flat over π∗(En,p). On the other hand, π∗(En,p) is

flat as a Zp-module. Thus π∗(E
⊗k
n,p) is flat as a Zp-module and therefore torsion-free. �

Lemma 4.17. Let f : A → B be a map of abelian groups that induces a surjection on the
quotient A/nA→ B/nB for every n ∈ N, then the map

B ⊕Q⊗A→ Q⊗B

is surjective.

Proof. Let 1
n ⊗ b ∈ Q⊗B. Since A/nA→ B/nB is surjective, we have some a ∈ A, b0 ∈ B

such that b = f(a) + nb0. It follows that 1
n ⊗ b = 1

n ⊗ f(a) + 1⊗ b0. �
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Lemma 4.18. Let A → B be a map of p-local spectra that is an equivalence after p-
completion and assume that πi(A) is torsion-free for all i ∈ Z, then the map

πi(B ⊕Q⊗A)→ πi(Q⊗B).

is surjective.

Proof. Let M(pm) be the Moore spectrum. The map A ⊗ M(pm) → B ⊗ M(pm) is an
equivalence for m = 1 by the definition of p-completion and for higher m by induction using
cofiber sequences. Consider the following diagram:

A
×pm //

��

A

��

// A⊗M(pm)

'
��

B
×pm // B // B ⊗M(pm).

In this diagram the two rows are cofiber sequences. Taking the corresponding map of long
exact sequences in homotopy groups and keeping in mind πi(A) is torsion-free, we get the
following diagram in which both rows are exact:

0 // πi(A)/pmπi(A)
∼= //

��

πi(A⊗M(pm)) //

∼=
��

0

��
0 // πi(B)/pmπi(B) // πi(B ⊗M(pm)) // πi(B)[pm] // 0.

We thus conclude that πi(B) is torsion-free and that πi(A)/pmπi(A) → πi(B)/pmπi(B) is
an isomorphism. Since A and B are p-local, we get that πi(A)/nπi(A) → πi(B)/nπi(B) is
an isomorphism for every n ∈ N. Lemma 4.17 gives the conclusion. �

Proposition 4.19. For each k, i, and n, the canonical map

πi(
∏
F
E
⊗Ŝk
n,p ⊕

∏
F
Q⊗ E⊗kn,p)→ πi(

∏
F
Q⊗ E⊗Ŝkn,p )

is surjective.

Proof. Since ultraproducts commute with homotopy groups and preserve surjections it is
enough to show that for each k, i, p, and n, the canonical map

πi(E
⊗Ŝk
n,p ⊕Q⊗ E⊗kn,p)→ πi(Q⊗ E

⊗Ŝk
n,p )

is surjective. This follows from Corollary 4.10, Lemma 4.16, and Lemma 4.18. �

The main result of this section is the following theorem.

Theorem 4.20. The object
∏
FE
⊗•+1
n,p in CAlg(Sp)∆ is formal. That is, there is an equiv-

alence of cosimplicial E∞-rings∏
F
E⊗•+1
n,p '

∏
F

(E⊗•+1
n,p )?.

Proof. Apply Corollary 4.5 to the pullback diagram in Corollary 4.12. The pullback diagram
satisfies the condition of Corollary 4.5 by Theorem 4.13, Lemma 4.15, and Proposition 4.19.

�



42 TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON

4.3. Rational formality. The purpose of this subsection is to prove Theorem 4.13. The
proof is an application of obstruction theory to commutative differential graded algebras
over a characteristic 0 field k.

Lemma 4.21. Let EQ = Q ⊗ En,p be the rationalisation of Morava E-theory then there
exists an E∞-ring map fp : Hπ0(EQ)→ EQ inducing an isomorphism on π0.

Proof. The existence of the map fp follows from the construction of En,p that appears in
[Lur18]. Specifically, given a perfect field k of characteristic p and G0 a height n formal group
law over k, let En,p be the Morava E-theory associated to G0. In [Lur18, Theorem 3.0.11
and Remark 3.0.14] Lurie constructs an E∞-ring RunG0

with π0(RunG0
) canonically identified

with the Lubin–Tate ring π0(En,p). Then, given the same data, in Section 6 of [Lur18] Lurie
constructs another E∞-ring RorG0

together with an E∞-ring map

RunG0
→ RorG0

,

see in particular [Lur18, Construction 6.0.1 and Remark 6.0.2]. We can now identify the
required map fp as

Hπ0(EQ) ∼= Q⊗RunG0
→ Q⊗RorG0

∼= EQ

due to the following facts:

(1) The map RunG0
→ RorG0

induces an isomorphism on π0, by [Lur18, Theorem 6.0.3].
(2) The E∞-ring RorG0

can be identified with En,p, by [Lur18, Theorem 5.1.5 and Remark
6.4.8].

(3) The E∞-ring Q⊗RunG0
is concentrated in degree 0, by [Lur18, Theorem 6.3.1]. �

Remark 4.22. For a fixed height n, we only need the existence of the map fp for large
enough p. Using this observation, it is possible to replace the argument of Lemma 4.21 by
an obstruction theoretic one. Indeed, in Section 4.4 we construct a Cp−1 action on En,p
such that the E∞-ring map

EhCp−1
n,p → En,p

induces an isomorphism on homotopy groups in degrees dividing 2(p − 1) and such that

πi(E
hCp−1
n,p ) is zero in all other degrees, see Remark 4.27. Let B be the connective cover of

(E
hCp−1
n,p )Q, then it is enough to show that there is an E∞-ring map

Hπ0(B)→ B

inducing an isomorphism on π0. This problem is amenable to standard techniques in ob-
struction theory; for an ∞-categorical treatment, see [Lura, Section 7.4.1]. Specifically,
applying [Lura, Remark 7.4.1.29] to ModHQp instead of Sp, using the E∞-operad, and set-
ting A = Hπ0(B), we get that the obstructions to the existence (ε = 1) and uniqueness
(ε = 0) of the required map lie in

Oεd = Extd+ε
π0(B)(Lπ0(B)/Qp , πd(B)).

Since π0(B) is regular, Lπ0(B)/Qp is concentrated in degree zero (see, for example, [Iye07]
Proposition 5.9 and Theorem 9.5) and thus as π0(B) is regular of Krull dimension n− 1 the
groups Oεd are all zero if p > n+1

2 and ε ∈ {0, 1}.

Lemma 4.23. Let R be a commutative algebra in ModHk and assume that there exists a
map Hπ0(R) → R which induces an isomorphism on π0 and that π∗(R) ∼= π0(R)[β±1] for
some β ∈ π2(R), then R is formal as an Hk-algebra.
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Proof. We have map Hπ0(R) → R that is an isomorphism on π0. Now β± ∈ π±2(R)
corresponds to maps Hk±2 → R. By the free-forgetful adjunction between ModHk and
ModHπ0(R), we get maps of Hπ0(R)-modules

α± : Σ±2Hπ0(R)→ R.

By the free-forgetful adjunction between algebras and modules, we get two Hπ0(R)-algebra
maps

γ± : Hπ0(R)[β±]→ R.

The map γ+ (resp. γ−) is an isomorphism on positive (resp. negative) homotopy groups.
The following diagram is a pushout diagram (as can be seen by applying π∗):

Hπ0(R)[β ⊗ β−1] //

��

Hπ0(R)

��
Hπ0(R)[β]⊗Hπ0(R) Hπ0(R)[β−1] // R,

where Hπ0(R)[β ⊗ β−1] is H applied to the polynomial algebra over π0(R) on a (formal)
generator β ⊗ β−1 in degree zero. The left vertical map sends β ⊗ β−1 to the element with
the same name. Since Hπ0(R)[β] ⊗Hπ0(R) Hπ0(R)[β−1] is flat over Hπ0(R)[β ⊗ β−1] and

Hπ0(R)[β] and Hπ0(R)[β−1] are formal, we deduce the formality of R. �

Let E = En,p and let EQ = Q⊗ En,p.

Corollary 4.24. The diagram

HQ→ HQp → EQ

is formal as an object in CAlg(Sp)∆2

. It is the image of Q→ Qp → π∗(EQ) under H∆2

.

Proof. Since π0(EQ) is a formally smooth Qp-algebra, Lemma 4.23 and Lemma 4.21 implies
that the mapHQp → EQ is formal. The result now follows as the canonical mapHQ→ HQp
is formal. �

Given maps of E∞-algebras A→ B → C, taking the Amitsur complexes of C over A and
over B we get a map of cosimplicial E∞-rings

C⊗A•+1 → C⊗B•+1.

Thus the maps of E∞-rings

HQ→ HQp → EQ

gives rise to an object in the ∞-category of maps of cosimplicial E∞-rings

(E
⊗HQ•+1
Q → E

⊗HQp•+1

Q ) ∈ CAlg(Sp)∆×∆1

.

Corollary 4.25. The object

(E
⊗HQ•+1
Q → E

⊗HQp•+1

Q ) ∈ CAlg(Sp)∆×∆1

is formal.

Proof. By Corollary 4.24, there are equivalences

(Hπ∗(EQ))⊗HQk ' E⊗HQk
Q and (Hπ∗(EQ))⊗HQpk ' E⊗HQpk

Q

for all k.



44 TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON

Now the laxness of H∆ gives us a natural map in CAlg(Sp)∆×∆1

H∆
(
π∗(EQ)⊗Q•+1

)
//

��

H∆
(
π∗(EQ)⊗Qp•+1

)
��

E
⊗HQ•+1
Q

// E
⊗HQp•+1

Q .

The vertical arrows give an equivalence in CAlg(Sp)∆×∆1

by the flatness of π∗(EQ) over Qp
and Q. �

4.4. The Cp−1-action on E-theory. It follows from [GH], that the stabilizer group S
(which depends on n and p) acts on E = En,p through E∞-ring maps. Recall that S =
Aut(G), where G is a height n formal group law over k, a perfect field of characteristic
p. The natural action of Z on G by left multiplication extends to an action of the p-adic
integers Zp. Thus the units in Zp act by automorphisms. This implies that S contains
a distinguished subgroup Cp−1 ⊂ Z×p ⊂ S. This inclusion is a distinguished element in

hom(Cp−1,Z×p ) that we use to fix the isomorphism

Z/(p− 1) ∼= hom(Cp−1,Z×p )

sending 1 to this element.

Proposition 4.26. The action of i ∈ Cp−1 ⊂ Z×p on E∗ ∼= E0[u, u−1] is given by sending

u 7→ iu.

Proof. This follows from [DH95, Proposition 3.3, Theorem 4.4] and is also described in
[Rog08, proof of 5.4.9]. See also [Hen07, Appendix]. �

Remark 4.27. Since p− 1 is prime to p, the homotopy groups of the homotopy fixed points
EhCp−1 may be computed by taking the fixed points for the action of Cp−1 on π∗E. There
is an isomorphism

π∗(E
hCp−1) ∼= E0[u±(p−1)].

Since Cp−1 acts on E and the map S0 → E is Cp−1-equivariant (with the trivial action
of Cp−1 on S0), there is an action of Cp−1 on the Amitsur complex of the map S0 → E. On
each degree of the Amitsur complex Cp−1 acts diagonally. The action of Cp−1 on π0(E⊗k)
is not trivial for k > 1, thus the formula of Proposition 4.26 does not extend to E⊗k when
k > 1. However, this can be corrected by working over the p-complete sphere spectrum
Ŝ = S0

p (working with the Amitsur complex of Ŝ → E). Note that the action of Cp−1 on

E⊗k described above induces an action on E⊗Ŝk. Our initial goal is to prove that the action
of Cp−1 on π0(E⊗Ŝk) is trivial. This will follow from the next two lemmas.

Lemma 4.28. Let A be a spectrum such that π∗(A) is torsion-free. There is a canonical
isomorphism

π∗(A
∧
p )

∼=−→ (π∗(A))∧p .

Proof. By [Bou79], there is an equivalence

A∧p ' lim(A⊗MZ/pk),

where MZ/pk is the mod p Moore spectrum. It suffices to show that

π∗(A⊗MZ/pk) ∼= (π∗A)/pk.
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These homotopy groups sit in a short exact sequence

πn(A)/pk → πn(A⊗MZ/pk)→ πn−1(A)[pk].

Since π∗(A) is torsion-free, we have an isomorphism

πn(A)/pk
∼=−→ πn(A⊗MZ/pk).

�

Lemma 4.29. The action of Cp−1 on π0((E⊗k)∧p ) is trivial.

Proof. Fix a coordinate on GE , the formal group associated to E, and let s, t : π0E →
π0(E⊗E) be the two canonical maps. Recall from [Hop] that π0(E⊗2) carries the universal
isomorphism of formal group laws

s∗GE ∼= t∗GE .

That is, π0(E⊗E) corepresents the functor on commutative rings sending a ring R to the set
of isomorphisms between the two formal group laws over R determined by the two induced
maps from π0E to R.

Since E is p-complete, a ∈ Zp determines an endomorphism [a] of GE (GE is a formal Zp-
module). The action of a ∈ Cp−1 ⊂ Zp on π0(E ⊗ E) is given by conjugating the universal
isomorphism by the pullback of [a] along s and t.

Since π∗(E
⊗k) is flat over π∗E and π∗E is torsion-free, it follows that π∗(E

⊗k) is torsion-
free. Lemma 4.28 implies that

π0((E⊗k)∧p ) ∼= π0(E⊗k)∧p .

Thus, when we restrict the functor determined by π0(E ⊗ E) to p-complete rings, the
resulting functor is corepresented by π0((E ⊗ E)∧p ). Since π0((E ⊗ E)∧p ) is p-complete, it
carries the universal isomorphism of formal Zp-modules s∗GE ∼= t∗GE . Since this is an
isomorphism of formal Zp-modules, the conjugation action is trivial.

We generalize this to the kth tensor power π0(E⊗k). We have a Cp−1-equivariant equiv-
alence

(E ⊗ E)⊗Ek−1 ' E⊗k,
which, by flatness, induces an isomorphism

π0(E ⊗ E)⊗π0Ek−1 ∼= π0(E⊗k).

Thus π0(E⊗k) carries the universal (k − 1)-tuple of composable isomorphisms between the
k-formal group laws determined by the k canonical maps from π0E to π0(E⊗k). Since Cp−1

acts trivially on π0E, the action of Cp−1 on π0(E⊗k) is given by conjugating the string of
k − 1 composable isomorphisms. It follows from the k = 2 case that this action is trivial
over the p-completion. �

Proposition 4.30. The action of Cp−1 on π0(E⊗Ŝk) is trivial.

Proof. By Corollary 4.10, the arithmetic square for E⊗Ŝk takes the form

E⊗Ŝk //

��

(E⊗k)∧p

��
(Q⊗ E)⊗Q⊗Ŝk // Q⊗ (E⊗k)∧p .
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By even periodicity, we have an injection

π0(E⊗Ŝk) ↪→ π0((Q⊗ E)⊗Q⊗Ŝk)⊕ π0(E⊗k)∧p .

It suffices to show that the Cp−1-action on the codomain is trivial. The action on the right

hand side is trivial by Lemma 4.29. Since Q⊗ Ŝ ' HQp, Q⊗E is flat over Q⊗ Ŝ. Thus we
have an isomorphism

π∗((Q⊗ E)⊗Q⊗Ŝk) ∼= (π∗(Q⊗ E))⊗Qpk.

Since Cp−1 acts on π∗(Q⊗E) according to Proposition 4.26, direct computation shows that

the action of Cp−1 on π0((Q⊗ E)⊗Q⊗Ŝk) is trivial for degree reasons. �

Corollary 4.31. The action of i ∈ Cp−1 on π2l(E
⊗Ŝk) is given by multiplication by il.

Proof. In the ∞-category of naive Cp−1-equivariant E-module spectra, there is a canonical
equivalence

E⊗Ŝk ⊗E Σ−2lE
'−→ Σ−2lE⊗Ŝk.

This gives rise to a Cp−1-equivariant isomorphism

π0(E⊗Ŝk)⊗π0E π2lE
∼=−→ π2l(E

⊗Ŝk),

where Cp−1 acts trivially on π0 by Proposition 4.30 and by il on π2l by Proposition 4.26. �

Remark 4.32. There are isomorphisms

πl((E
⊗Ŝk)hCp−1) ∼=

{
πl(E

⊗Ŝk) if 2(p− 1)|l,
0 otherwise

and the map of E∞-ring spectra (E⊗Ŝk)hCp−1 → E⊗Ŝk is an isomorphism after applying π∗
when ∗ = 2(p− 1)l.

4.5. Symmetric monoidal categories from abelian groups. Let A be an abelian
group. It may be considered as a symmetric monoidal ∞-category A⊗ whose underly-
ing category is the discrete category which is A as a set. This point of view is functorial,
a homomorphism of abelian groups A → B gives rise to a symmetric monoidal functor of
symmetric monoidal ∞-categories A⊗ → B⊗. Recall that the ∞-category of symmetric
monoidal ∞-categories and lax symmetric monoidal functors is a full subcategory of the
∞-category of ∞-operads. Thus A⊗ may be viewed as an ∞-operad. For example if 0 is
the group with one element we have 0⊗ = E∞.

Recall from [Lura, Section 2.1] that an ∞-operad O⊗ may be thought of as a multicat-
egory. It is possible to add an additional object ∗ to O, the underlying ∞-category of O⊗,
which is “multifinal”. That is all multimapping spaces with target ∗ are contractible. We
carefully define this contruction in the case O⊗ = A⊗:

Proposition 4.33. Let A be an abelian group. There is a symmetric monoidal ∞-category
A⊗|B under E∞ built out of A⊗ by adding a multifinal object. It is equipped with an inclusion

A⊗ ↪→ A⊗|B

and the construction is natural in maps of abelian groups.

Proof. For an abelian groups A, the∞-operad A⊗|B can be described very explicitly. Indeed,
given a pointed set X ∈ Set∗, let X◦ be the set obtained by removing the special point (note
that this is not functorial). An object in A⊗|B is a finite pointed set X ∈ Fin∗ together
with a map a : X◦ → A

∐
{∗} ∈ Set. While a morphism in A⊗|B from a : X◦ → A

∐
{∗} to

b : Y ◦ → A
∐
{∗} is a map f : X → Y in Fin∗ such that for all y ∈ Y such that b(y) 6∈ {∗}
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we have that a(f−1(y)) ⊂ A and
∑
a(f−1(y)) = b(y). This gives A⊗|B the structure of a

symmetric monoidal ∞-category with respect to the obvious map to Fin∗.
The inclusion A⊗ ↪→ A⊗|B is induced by the map postcomposing a : X◦ → A with the

canonical inclusion A ↪→ A
∐
{∗}. �

Let AB be the underlying ∞-category of A⊗|B.
Now let C be a presentably symmetric monoidal ∞-category and let A be an abelian

group. Restriction along the inclusion A⊗ ↪→ A⊗|B produces a map

θA : AlgA⊗|B(C)→ AlgA⊗(C).

Lemma 4.34. Let F ∈ AlgA⊗(C), let F ′ ∈ AlgA⊗|B(C), and let f : F → θA(F ′) be a map.
Then f exhibits F ′ as a free A⊗|B-algebra generated by F if and only if

(1) For every a ∈ A the map f(a) : F (a)→ θA(F ′)(a) is an equivalence in C.
(2) The underlying functor

F ′ : AB → C
is a colimit diagram.

Proof. We have attempted to use the notation of [Lura, Definition 3.1.3.1]. In [Lura, Defi-
nition 3.1.3.1], for an object x ∈ AB, Lurie defines(

A⊗act

)
/x

= A⊗ ×A⊗|B
(
A
⊗|B
act

)
/x
.

Note that
(
A⊗act

)
/a

is in fact the overcategory
(
A⊗act

)
/a

for a an object in A ⊂ A⊗act. We

define

ca : ∆0 →
(
A⊗act

)
/a

to be the functor that chooses the cone point. Also let

c∗ : A→
(
A⊗act

)
/∗

be the functor induced by the two obvious functors

A→ A⊗

and

A→ AB → AB
/∗ →

(
A
⊗|B
act

)
/∗
.

Both ca and c∗ are cofinal. This is clear for ca. The cofinality of c∗ is a straightforward
computation since (

A⊗act

)
/∗ ' A

⊗
act '

∐
a∈A

(
A⊗act

)
/a
.

By Definition 3.1.3.1 of [Lura], f exhibits F ′ as a free A⊗|B-algebra generated by F if
and only if for every object x ∈ AB, the map

ᾱx :
( (
A⊗act

)
/x

)B → C⊗
is an operadic colimit diagram. Since C is a presentably symmetric monoidal ∞-category,
[Lura, Proposition 3.1.1.15] and [Lura, Proposition 3.1.1.16] prove that this is equivalent to
the following condition: For every object x ∈ AB the map

β̄x :
( (
A⊗act

)
/x

)B → C
is a colimit diagram. Here β̄x is a certain functor built out of ᾱx.



48 TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON

By the cofinality of ca and c∗, β̄x is a colimit diagram for every x ∈ AB if and only if
β̄a ◦ cBa and β̄∗ ◦ cB∗ are colimit diagrams. These two conditions are conditions (1) and (2)
in the statement of the lemma. �

Now since C is presentably symmetric monoidal, [Lura, Corollary 3.1.3.5] implies that θA
has a left adjoint (the free algebra functor) that we shall denote by

LA : AlgA⊗(C)→ AlgA⊗|B(C).

Proposition 4.35. In the above situation we have:

(1) The unit of the adjunction LA a θA, η : Id⇒ θA ◦ LA, is an equivalence.
(2) Let F ∈ AlgA⊗(C) and let

LA(F ) : AB → C

be the underlying functor of ∞-categories, then LA(F ) is a colimit diagram.

(3) Let F ′ ∈ AlgA⊗|B(C) be such that the underlying functor

F ′ : AB → C
is a colimit diagram, then the counit ε : LA◦θA ⇒ Id applied to F ′ is an equivalence.

Proof. For F ∈ AlgA⊗(C), the map

ηF : F → θA(LA(F ))

exhibits LA(F ) as the free A⊗|B-algebra generated by F . We thus get (1) and (2) from
parts (1) and (2) of Lemma 4.34 respectively.

For part (3), let F ′ ∈ AlgA⊗|B(C) be such that the underlying functor

F ′ : AB → C
is a colimit diagram. Consider the identity map f : θA(F ′) → θA(F ′), by Lemma 4.34 f
exhibits F ′ as the free A⊗|B-algebra generated by θA(F ′). Thus the map εF ′ : LA(θA(F ′))→
F ′ is an equivalence. �

We now turn to understanding symmetric monoidal functors with domain (Z/n)⊗. These
results will be used in the next two subsections. We denote by η the Hopf element in π1(S0).

Lemma 4.36. Let P be a spectrum with homotopy groups concentrated in degrees 0 and 1.
Let n be a natural number and let a ∈ π0(P ). Assume that

(1) na = 0
(2) ηa = 0,

then there exists a map
f : HZ/n→ P

such that π0(f)(1) = a.

Proof. Condition (1) gives us a map HZ/n→ Hπ0(P ) sending 1 to a. We want a lift in the
diagram

P

��
HZ/n //

99

Hπ0(P ),

where the vertical map is the truncation. Denote the pullback of the diagram by Q. The
spectrum Q is concentrated in degrees 0 and 1 and it follows that π1(Q) = π1(P ) and
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π0(Q) = Z/n. We need to find a section to the map Q→ Hπ0(Q), that is, we need to prove
that Q has a trivial k-invariant. By condition (2) the Hopf map acts trivially on π0(Q) and
the result follows from [BM08, Section 8]. �

Proposition 4.37. Let C be symmetric monoidal 1-category and let a be a tensor invertible
object in C such that a⊗n ∼= 1C. Assume that the symmetry map βa,a = Ida⊗a, then there is
a symmetric monoidal functor

(Z/n)⊗ → C
sending 1 to a.

Proof. Let P = pic(C) (the Picard spectrum of C). Since C is a 1-category the homotopy
groups of P are concentrated in degrees 0 and 1. We need to show the existence of a map
HZ/n → P sending 1 to the class of a in π0(P ). We shall use Lemma 4.36. Condition (1)
follows from the fact that a⊗n ∼= 1C . Condition (2) follows from the fact that βa,a = Ida⊗a
and Lemma 3.4 in [GJOS17] (which cites [JO12]). �

4.6. Functorial weight decompositions. In this subsection we will use the Cp−1-action
described in Section 4.4 to decompose E⊗Ŝk as a finite sum of (E⊗Ŝk)hCp−1 -module spectra.
We will develop the theory of weights in the context of naive Cp−1-equivariant modules over

Ŝ to produce a functorial decomposition. In the next subsection, this naturality will be used
to decompose the entire Amitsur complex of the map Ŝ → E.

Let ModŜ be the ∞-category of modules over Ŝ and let

(ModŜ)BCp−1 = Fun(BCp−1,ModŜ)

be the ∞-category of naive Cp−1-equivariant modules over Ŝ. Since ModŜ is a symmetric
monoidal ∞-category, the functor category is as well. We will make use of the forgetful
functor

U : (ModŜ)BCp−1 → ModŜ
given by restriction along Be→ BCp−1.

Lemma 4.38. There is an action of Z×p on Ŝ inducing the obvious action on π∗Ŝ.

Proof. The canonical map

BZ→ BZp
is an HFp-homology equivalence. This induces a map

S0 ' Σ−1Σ∞BZ→ Σ−1(Σ∞BZp)∧p
that factors to give a map

Ŝ → Σ−1(Σ∞BZp)∧p .
This is a map between p-complete connective spectra and it is an HFp-homology equivalence,
thus it is an equivalence. There is an obvious action of Z×p on BZp and this induces the

action on Ŝ that we desire. �

Let j ∈ Z/(p − 1) = hom(Cp−1,Z×p ). Let Ŝ(j) be the p-complete sphere equipped with
the action of Cp−1 induced by j. We are viewing this as a naive Cp−1-equivariant module.

Let Ŝ(0) ' Ŝ be the Cp−1-spectrum determined by j = 0, the zero homomorphism.

Now let B be a naive Cp−1-equivariant module over Ŝ. We define

Bj = (B ⊗Ŝ Ŝ(−j))hCp−1 .
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Note that the underlying non-equivariant modules of B ⊗Ŝ Ŝ(−j) and B agree:

U(B ⊗Ŝ Ŝ(−j)) ' U(B).

Lemma 4.39. Let Zp(−j) be Zp acted on by Cp−1 through j and let B ∈ (ModŜ)BCp−1 ,
then there is an isomorphism of Cp−1-modules

π∗(B ⊗Ŝ Ŝ(−j)) ∼= π∗(B)⊗Zp Zp(−j)

and an isomorphism of abelian groups

π∗(Bj) ∼= (π∗(B)⊗Zp Zp(−j))Cp−1 .

Proof. There is an isomorphism of Cp−1-modules

π0(Ŝ(−j)) ∼= Zp(−j)

inducing a map of Cp−1-modules

π∗(B)⊗Zp Zp(−j)→ π∗(B ⊗Ŝ Ŝ(−j))

and this is an isomorphism of abelian groups and thus an isomorphism of Cp−1-modules.
The second isomorphism follows from the fact that p−1 is coprime to p so that the homotopy
fixed points can be computed as the fixed points. �

Example 4.40. By Corollary 4.31 and Lemma 4.39, there are isomorphisms

πl((E
⊗Ŝk)j) ∼=

{
πlE

⊗Ŝk if l ≡ 2j mod 2(p− 1),

0 otherwise.

Thus, on the level of homotopy groups, we have an isomorphism⊕
j∈Z/(p−1)

π∗((E
⊗Ŝk)j)

∼=−→ π∗(E
⊗Ŝk).

We are going to promote this isomorphism to an equivalence of (E⊗Ŝk)0-modules⊕
j∈Z/(p−1)

(E⊗Ŝk)j
'−→ E⊗Ŝk.

In fact, we would like these equivalences to assemble into a decomposition of the entire
Amitsur complex E⊗Ŝ•+1. The next propositions deal with all of the coherence involved in
doing this.

Recall the construction of the ∞-operad (Z/(p− 1))⊗ from Section 4.5.

Proposition 4.41. There is an object W ∈ Alg(Z/(p−1))⊗(Mod
BCp−1

Ŝ
) defined by

W (j) = Ŝ(−j).

Proof. We will construct a symmetric monoidal functor

W : (Z/(p− 1))⊗ → Mod
BCp−1

Ŝ

such that W (j) = Ŝ(−j). In particular, W can be considered as a lax symmetric monoidal

functor and thus an object in Alg(Z/(p−1))⊗(Mod
BCp−1

Ŝ
). This will be done in two steps.

First we produce a symmetric monoidal functor

(Z/(p− 1))⊗ → Ho(Mod
BCp−1

Ŝ
)
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to the homotopy category with the correct property. We apply Proposition 4.37, so we need
to check two conditions.

First, we show that Ŝ(−1)⊗j ∼= Ŝ(−j) (note that Ŝ(p − 1) = Ŝ(0) by definition) in

Ho(Mod
BCp−1

Ŝ
). We have an equivalence

Hom
Mod

BCp−1

Ŝ

(Ŝ(−1)⊗j , Ŝ(−j)) ' HomModŜ
(U(Ŝ(−1))⊗j , U(Ŝ(−j)))Cp−1 ' ŜhCp−1 ,

where the action in the middle is the conjugation action. The first equivalence has been
proven in the ∞-categorical setting in [Gla16, Proposition 2.3]. The conjugation action on

the homotopy groups of Ŝ on the right hand side is trivial since, on the level of homotopy
groups, the weights are the same. Since p − 1 is prime to p, we get ŜhCp−1 = Ŝ. Thus we
have an equivariant map lifting the identity.

Second, we would like to prove that

βŜ(−1),Ŝ(−1) = IdŜ(−1)⊗Ŝ(−1) ∈ Map
Ho(Mod

BCp−1

Ŝ
)
(Ŝ(−1)⊗ Ŝ(−1), Ŝ(−1)⊗ Ŝ(−1)).

We have a symmetric monoidal forgetful functor

U : Ho(Mod
BCp−1

Ŝ
)→ Ho(ModŜ).

Similarly to previous paragraph, U induces an isomorphism

Map
Ho(Mod

BCp−1

Ŝ
)
(Ŝ(−1)⊗ Ŝ(−1), Ŝ(−1)⊗ Ŝ(−1))

∼=−→ MapHo(ModŜ)(Ŝ ⊗ Ŝ, Ŝ ⊗ Ŝ)

sending βŜ(−1),Ŝ(−1) to βŜ,Ŝ , but βŜ,Ŝ = IdŜ⊗Ŝ as Ŝ is the unit. Now Proposition 4.37

furnishes us with the functor.
Finally, we show that the symmetric monoidal functor

(Z/(p− 1))⊗ → Ho(Mod
BCp−1

Ŝ
)

lifts to a functor

(Z/(p− 1))⊗ → Mod
BCp−1

Ŝ
.

By passing to Picard spectra, we are looking for a lift in the diagram:

pic(Mod
BCp−1

Ŝ
)

��
HZ/(p− 1) //

66

pic(Mod
BCp−1

Ŝ
)[0, 1],

where pic(Mod
BCp−1

Ŝ
)[0, 1] is the first Postnikov truncation of pic(Mod

BCp−1

Ŝ
). The obstruc-

tion to this lift is in the abelian group[
HZ/(p− 1),Σ pic(Mod

BCp−1

Ŝ
)[2,∞]

]
.

But

πi
(
Σ pic(Mod

BCp−1

Ŝ
)[2,∞]

)
= 0 for i < 3

and

πi
(
Σ pic(Mod

BCp−1

Ŝ
)[2,∞]

)
= πi−2(Ŝ) for i ≥ 3

so all of the homotopy groups of Σ pic(Mod
BCp−1

Ŝ
)[2,∞] are finite of order prime to (p −

1). �
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Recall from [Lura, Example 3.2.4.4] that if C⊗ is a symmetric monoidal ∞-category and
O⊗ is an∞-operad, then the∞-category AlgO⊗(C) inherits a symmetric monoidal structure
given by pointwise tensor product.

Proposition 4.42. Let D be a small ∞-category and let

B• ∈ CAlg

((
Mod

BCp−1

Ŝ

)D)
' CAlg(Mod

BCp−1

Ŝ
)D.

There exists
X• ∈ AlgZ/(p−1)⊗|B(ModD

Ŝ
),

depending on B•, such that:

(1) For all j ∈ Z/(p− 1) we have an equivalence

X•(j) ' (B•)j ∈ ModD
Ŝ
.

(2) Let X•(∗) ∈ CAlg(ModD
Ŝ

) be the restriction to the cone point, then we have an
equivalence

X•(∗) ' U(B•) ∈ CAlg(ModD
Ŝ

).

Proof. Consider the map

LZ/(p−1)(W ) : Z/(p− 1)⊗|B → Mod
BCp−1

Ŝ
.

Restriction along the map D → ∗ gives a map

L• : Z/(p− 1)⊗|B →
(

Mod
BCp−1

Ŝ

)D
.

Now given

B• ∈ CAlg
((

Mod
BCp−1

Ŝ

)D)
,

pulling back with respect to the (unique) map Z/(p − 1)⊗|B → E∞ produces an object

in AlgZ/(p−1)⊗|B
((

Mod
BCp−1

Ŝ

)D)
that we will abusively also denote by B•. Now we may

tensor B• with L• in AlgZ/(p−1)⊗|B
((

Mod
BCp−1

Ŝ

)D)
. This provides us with an object

B• ⊗ L• ∈ AlgZ/(p−1)⊗|B
((

Mod
BCp−1

Ŝ

)D)
.

Note that the homotopy fixed point functor

(−)hCp−1 : Mod
BCp−1

Ŝ
→ ModŜ

is lax symmetric monoidal by [Lura, Corollary 7.3.2.7] as it is right adjoint to the constant

functor ModŜ → Mod
BCp−1

Ŝ
. We set

X• = (B• ⊗ L•)hCp−1 ∈ AlgZ/(p−1)⊗|B(ModD
Ŝ

).

All of the properties of X• can be checked objectwise in D. Property (1) follows from the
definition and Property (2) follows from Proposition 4.35 and can be checked on homotopy
groups. �

Our goal is to apply Proposition 4.42 to the Amitsur complex of Ŝ → E. This allows us
to apply the theory of weights to the entire cosimplicial E∞-ring spectrum

E⊗Ŝ•+1.

Let D = ∆, let

B• = E⊗Ŝ•+1 ∈ CAlg
((

Mod
BCp−1

Ŝ

)∆)
,
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and let

X•p ∈ AlgZ/(p−1)⊗|B(Mod∆
Ŝ

)

be the object constructed in Proposition 4.42. Note that this depends on the prime. A part
of this dependence may be removed by considering the restriction along the canonical map

Z⊗|B q−→ Z/(p− 1)⊗|B.

Let Y •p = X•p ◦ q. The next result follows from Proposition 4.42 and Example 4.40.

Proposition 4.43. The object

Y •p ∈ AlgZ⊗|B(Mod∆
Ŝ

)

satisfies the following properties:

(1) For all j, l ∈ Z and [n] ∈ ∆ the map

πl(Yp
[n](j))→ πl(Yp

[n](∗))

is an isomorphism on πl if l = 2j mod 2(p − 1) and it is the inclusion of zero
otherwise, where

Yp
• : ZB → Mod∆

Ŝ

is the underlying functor of ∞-categories.
(2) The restriction to the cone point Y •p (∗) ∈ CAlg(Mod∆

Ŝ
) is equivalent to the Amitsur

complex. That is, we have an equivalence

Y •p (∗) ' E⊗Ŝ•+1 ∈ CAlg(Mod∆
Ŝ

).

4.7. Formality of the ultraproduct. The goal of this subsection is to prove Theorem 4.14.
The symmetric monoidal structure on GrAbQ induces a symmetric monoidal structure

on AlgZ⊗(GrAbQ) with the unit e the constant functor with value the unit.

Proposition 4.44. There is an invertible object L2 ∈ AlgZ⊗(GrAbQ) given by

L2(i) ∼= Q[2i],

where Q[2i] is the object with Q in degree 2i and 0 everywhere else.

Proof. To construct L2, we apply Proposition 4.37. Since

βQ[i],Q[i] = (−1)i
2

IdQ[i]⊗Q[i],

it follows that

βQ[2],Q[2] = IdQ[2]⊗Q[2] .

Since the image of L2 consists of invertible objects, L2 is invertible. �

We denote the inverse to L2 by L−2 so that

L−2(i) ∼= Q[−2i].

Proposition 4.45. Let F ∈ AlgZ⊗(SpDQ ) be such that π∗(F (i)(d)) is concentrated in degree
2i, then F is in the image of

HD : AlgZ⊗(GrAbDQ )→ AlgZ⊗(SpDQ ).
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Proof. By pulling back along D → ∗, we will view L2 and L−2 as objects in AlgZ⊗(GrAbDQ ).
Let

G = F ⊗HD(L−2).

All of the objects in the image of G are concentrated in degree 0. Thus G lands in
AlgZ⊗(SpQ[0, 0]D) and Lemma 4.7 implies that G is in the image HD. Thus G ' HDπD∗ (G),

where πD∗ (G) is in AlgZ⊗(GrAbDQ ).
We now use the first statement in Lemma 4.7 to conclude that

HD(πD∗ (G)⊗ L2) ' HD(πD∗ (G))⊗HD(L2)

' G⊗HD(L2)

= F ⊗HD(L−2)⊗HD(L2)

' F ⊗HD(L−2i ⊗ L2)

' F ⊗HD(e)

' F.
�

Proposition 4.46. Let F ∈ AlgZ⊗|B(SpDQ ) and assume that for all i ∈ Z and d ∈ D the
graded abelian group

π∗(F (i)(d))

is concentrated in degree 2i and that

F : ZB → SpDQ

is a colimit diagram, then F (∗) ∈ CAlg(SpDQ ), the restriction to the terminal object, is
formal.

Proof. Consider the following collection of ∞-categories and functors:

AlgZ⊗(GrAbDQ )
HDZ //

LGrAb
Z

��

AlgZ⊗(SpDQ )

LSp
Z
��

AlgZ⊗|B(GrAbDQ )
HDZB

// AlgZ⊗|B(SpDQ ).

The horizontal arrows are induced by postcomposition with

HD : GrAbDQ → SpDQ .

The vertical arrows are the left adjoints to the natural restriction maps θGrAb
Z and θSp

Z .

First we prove that this diagram commutes. It is clear that HD
Z ◦ θGrAb

Z = θSp
Z ◦HD

ZB since
the θ’s are induced by precomposition. Using the L a θ adjunctions, we get a natural
transformation

β : LSp
Z ◦H

D
Z ⇒ HD

ZB ◦ LGrAb
Z .

We need to show that β is an equivalence, but this can checked on the underlying functors.
Now by parts (1) and (2) of Proposition 4.35 the underlying functor produced by either L
is a coproduct diagram and HD respects coproducts.

Recall that θZF ∈ AlgZ⊗(SpDQ ) is the restriction of F . Let

G = π∗(θZ(F )) ∈ AlgZ⊗(GrAbDQ ).
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Proposition 4.45 implies that θZF ' HD
Z (G). Now by part (3) of Proposition 4.35,

F ' LSp
Z (θZF ),

so we have equivalences

F ' LSp
Z (θZF ) ' LSp

Z (HD
Z (G)) ' HD

ZB(LGrAb
Z (G)).

Thus F is in the image of HD
ZB and so F (∗) is in the image of HD. �

Lemma 4.47. The homotopy groups of the spectrum∏
F

(
(E
⊗Ŝk
n,p )j

)
are concentrated in degree 2j and the canonical map∏

F

(
(E
⊗Ŝk
n,p )j

)
→
∏
F

(E
⊗Ŝk
n,p )

is an isomorphism in degree 2j. In particular, the canonical map⊕
j∈Z

∏
F

(
(E
⊗Ŝk
n,p )j

)
→
∏
F

(E
⊗Ŝk
n,p )

is an equivalence of spectra.

Proof. Both statement follows immediately from the fact that π∗(−) commutes with ultra-
products and Example 4.40. �

Recall the definition of
Y •p ∈ AlgZ⊗|B(Mod∆

Ŝ
)

from Proposition 4.43. In particular, Y •p (∗) is the Amitsur complex of the map Ŝ → En,p.
The goal of the section is to study the formality of the ultraproduct of these Amitsur
complexes at a non-principal ultrafilter.

Now we construct the ultraproduct. Let F be a non-principal ultrafilter on the set of
primes. Consider the product∏

p∈P
Y •p : Z⊗|B −→

(∏
p∈P

ModŜp
)∆
.

Postcomposing with the canonical map∏
p∈P

ModŜp
n◦m◦[−]−−−−−→

∏[[

F
ModŜp

produces a lax functor

Z⊗|B −→
(∏[[

F
ModŜp

)∆
.

But Theorem 3.63 implies that ∏[[

F
ModŜp ' Mod∏

F Ŝp

and, since
∏
F Ŝp ' HZF , we have a lax functor

Z⊗|B −→ Mod∆
HZF .

Since ZF is a Q-algebra, we may forget to ModHQ ' SpQ. This gives us a lax functor

Y •F : Z⊗|B −→ Sp∆
Q .

This object has been constructed so that

Y •F (∗) '
∏
F
E
⊗Ŝ•+1
n,p .
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Theorem 4.48. There is an equivalence of cosimplicial E∞-rings∏
F
E
⊗Ŝ•+1
n,p '

∏
F

(E
⊗Ŝ•+1
n,p )?.

Proof. To prove that this cosimplicial E∞-ring
∏
FE
⊗Ŝ•+1
n,p ' Y •F (∗) is formal, it suffices to

show that Y •F satisfies the conditions of Proposition 4.46. But this follows immediately from
Proposition 4.43 and Lemma 4.47. �

5. Descent

The goal of this section is to prove Theorem 5.1. The∞-category Frn,p appearing on the
right hand side is constructed in Section 5.3. We write En,p for Morava E-theory at height
n and the prime p.

Theorem 5.1. For any non-principal ultrafilter F on P, there is an equivalence of sym-
metric monoidal compactly generated rational stable ∞-categories∏Pic

F
Spn,p '

∏Pic

F
Frn,p .

5.1. Abstract descent. We begin by recalling some facts regarding ∞-categorical descent
theory. We then explore the relation between ∞-categorical descent and the Pic-generated
protoproduct.

Suppose that (C,⊗,1) is a presentably symmetric monoidal monogenic stable∞-category.
For X ∈ C, we may define π∗X = π∗Hom(1, X). If A ∈ C is a commutative algebra object
in C, we will write A⊗•+1 ∈ C∆ for the Amitsur complex of A defined in Section 4.2, i.e.,
the cosimplicial diagram

A // // A⊗2oo ////
//
A⊗3oooo ////

//// · · · .
oooooo

Similarly, ModA⊗•+1(C) denotes the associated cosimplicial diagram of∞-categories of mod-
ules over A⊗•+1 in C:

ModA(C) //// ModA⊗2(C)oo ////
//
ModA⊗3(C)oo oo ////

//// · · · .
oooooo

As a consequence of Lurie’s ∞-categorical generalization of the Barr–Beck theorem,
Mathew [Mat16, Proposition 3.22] shows:

Proposition 5.2 (Lurie, Mathew). If the tower {Totm(A⊗•+1)}m≥0 of partial totalizations
associated to the cosimplicial diagram A⊗•+1 is pro-constant with limit 1, then the natural
functor

C ' // Tot(ModA⊗•+1(C))
is an equivalence of symmetric monoidal ∞-categories.

Remark 5.3. Mathew [Mat16, Proposition 3.20] also shows that the condition of the above
proposition is equivalent to the statement that the thick ideal generated by A is C; if this is
the case, A is said to admit descent in C.

Bousfield [Bou87] provides a convenient criterion for checking the assumption of the
propositon, an ∞-categorical formulation of which can be found in [Mat16]. To state it, we
have to recall some auxiliary notation, first introduced in [HPS99].

Definition 5.4. Let CN be the ∞-category of towers of objects in C. A tower {Ym} ∈ CN
is said to be strongly pro-constant if it satisfies the following condition:
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Let X = limm Ym and let {X} ∈ CN denote the constant tower on X, then the
cofiber of the natural map {X} → {Ym} is nilpotent, i.e., there exists an r ≥ 1 such
that any r-fold composite in this tower is 0.

The smallest integer r ≥ 1 with this property will be called the nilpotence degree of {Ym}.

Note that, in particular, strongly pro-constant towers are pro-constant.

Definition 5.5. A commutative algebra A in C has fast-degree r if the Tot-tower associated
to the Amitsur complex is strongly pro-constant of nilpotence degree r. If there is no such
natural number, then we will say the fast-degree of A is ∞.

Definition 5.6. A commutative algebra A in C has vanishing-degree r if for all X,Y objects
in C, the A-based Adams spectral sequence associated to the cosimplicial spectrum

Hom(X,A⊗•+1 ⊗ Y )

collapses at the rth page with a horizontal vanishing line of intercept r. If there is no such
natural number, then we will say the vanishing-degree is ∞.

In [Mat15, Proposition 3.12], Mathew proves that the fast-degree is less than ∞ if and
only if the vanishing-degree is less than∞. A careful reading of his proof gives the following
lemma:

Lemma 5.7. Let A be a commutative algebra in C, let v be its vanishing-degree and let f
be its fast-degree, then

v ≤ f + 1 and f ≤ 2v.

Remark 5.8. In fact, there is a third number that can be associated to a commutative
algebra A in C. Let r be the smallest number such that for all objects X in C the A-based
Adams spectral sequence associated to the cosimplicial spectrum

Hom(X,A⊗•+1)

collapses at the rth page with a horizontal vanishing line of intercept r. Lemma 5.7 is also
true when v is replaced by r.

Lemma 5.9. Let F : C → D be a symmetric monoidal exact functor between presentably
symmetric monoidal stable ∞-categories. Let A be a commutative algebra in C of fast-degree
r, then F (A) is a commutative algebra in D of fast-degree r.

Proof. First note that F sends nilpotent towers to nilpotent towers. The functor F com-
mutes with tensor powers, cofiber sequences, Totn, and sends zero-maps to zero-maps. If A
is a commutative algebra in C of fast degree r, it thus follows that the cofiber of the natural
map

{F (Tot(A⊗•+1))} → {F (Totn(A⊗•+1))} ' {Totn(F (A⊗•+1))}
is nilpotent. Therefore, in order to show that F (A) has fast-degree r, it suffices to prove
that

F (Tot(A⊗•+1)) ' Tot(F (A)⊗•+1).

Applying F to the cofiber sequence of towers

{Tot(A⊗•+1)} → {Totn(A⊗•+1)} → {Ci}

gives the cofiber sequence of towers

{F (Tot(A⊗•+1))} → {Totn(F (A)⊗•+1)} → {F (Ci)}.
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Since the tower {F (Ci)} is nilpotent, taking the inverse limit of the tower gives the cofiber
sequence

F (Tot(A⊗•+1))→ Tot(F (A)⊗•+1)→ 0,

which proves the claim. �

Proposition 5.10. Let (Y •i )i∈I be a collection of cosimplicial spectra. Assume that the
Bousfield–Kan spectral sequence for Y •i has a horizontal vanishing line at the Er-page for
some r. Assume further that the page and the intercept of the vanishing line can be chosen
to be independent of i, then the natural map∏

F
Tot(Y •i ) −→ Tot(

∏
F
Y •i )

is an equivalence for any ultrafilter F on I.

Proof. We may rewrite the natural map above as

colim
U∈F

lim
•∈∆

∏
i∈U

Y •i −→ lim
•∈∆

colim
U∈F

∏
i∈U

Y •i .

We will apply Proposition 3.3 of [Mit97] to show that it is an equivalence by verifying that
the map satisfies the two conditions given there. In the notation of [Mit97], we will let

XU = lim
•∈∆

∏
i∈U

Y •i

for U ∈ F , and

X = lim
•∈∆

colim
U∈F

∏
i∈U

Y •i .

The spectral sequence we will use is the Bousfield–Kan spectral sequence. To satisfy the first
condition, in view of Remark 3.6 in [Mit97], it is enough to show that there is a universal
bound on the vanishing line at some fixed page for the Bousfield–Kan spectral sequence
associated to

∏
i∈UY

•
i for any U ∈ F . By assumption there is a universal bound for I ∈ F ,

which gives the claim. To satisfy the second condition we must show that there is an
isomorphism

colim
U∈F

Hqπs
∏

i∈U
Y •i

∼=−→ Hqπscolim
U∈F

∏
i∈U

Y •i ,

for all q and s, but this follows from the fact that homology commutes with filtered colimits
and that the sphere is compact. Thus the natural map is an equivalence. �

Definition 5.11. If A is a commutative algebra in C such that −⊗ A is conservative and
the fast-degree of A is less than ∞, then we will call A descendable.

Remark 5.12. If A ∈ C is descendable, then, for any object X ∈ C,

X ' TotA⊗•+1 ⊗X.

Proposition 5.13. Let (Ci)i∈I be a collection of symmetric monoidal compactly generated
stable ∞-categories with compact unit and let (Ai)i∈I be a collection of descendable objects
such that there exists r > 0 such that for all i ∈ I, Ai has fast-degree less than or equal to
r, then the canonical symmetric monoidal functor∏Pic

F Ci
F // Tot(

∏Pic
F ModA⊗•+1

i
(Ci))

is fully faithful.
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Proof. It suffices to check this on the mapping spectrum Hom([Xi], [Yi]) between compact
objects [Xi] and [Yi]. We must show that the map

Hom∏Pic
F Ci

([Xi], [Yi])→ HomTot(
∏Pic
F Mod

A
⊗•+1
i

(Ci))(F [Xi], F [Yi])

is an equivalence. We will identify this with the natural map∏
F

Tot(HomCi(Xi, A
⊗•+1
i ⊗ Yi)) −→ Tot(

∏
F

HomCi(Xi, A
⊗•+1
i ⊗ Yi)),

which is given by the composition∏
F

Tot(HomCi(Xi, A
⊗•+1
i ⊗ Yi)) '

∏
F

HomCi(Xi, Yi)

'Hom∏Pic
F Ci

([Xi], [Yi])

→HomTot(
∏Pic
F Mod

A
⊗•+1
i

(Ci))(F [Xi], F [Yi])

'HomTot(
∏Pic
F Mod

A
⊗•+1
i

(Ci))([A
⊗•+1
i ⊗Xi], [A

⊗•+1
i ⊗ Yi])

'Tot Hom∏Pic
F Mod

A
⊗•+1
i

(Ci)([A
⊗•+1
i ⊗Xi], [A

⊗•+1
i ⊗ Yi])

'Tot
∏
F

HomMod
A
⊗•+1
i

(Ci)(A
⊗•+1
i ⊗Xi, A

⊗•+1
i ⊗ Yi)

'Tot
∏
F

HomCi(Xi, A
⊗•+1
i ⊗ Yi).

The first equivalence follows from Remark 5.12. The second equivalence follows by the
compactness of [Xi] and [Yi] and Proposition 3.12. The third equivalence is the definition of
F . The fourth equivalence follows from general facts regarding mapping spectra in limits of
∞-categories. The fifth equivalence follows from the compactness of [A⊗ki ⊗Xi] and [A⊗ki ⊗Yi]
and Proposition 3.12. The last equivalence follows from the free-forgetful adjunction.

We apply Proposition 5.10 to the collection of cosimplicial spectra

(HomCi(Xi, A
⊗•+1
i ⊗ Yi))i∈I .

By our assumption on the collection (Ai)i∈I and Lemma 5.7, (Ai)i∈I has bounded vanishing-
degree. Proposition 5.10 implies the map is an equivalence. �

Remark 5.14. The previous result holds for the protoproduct, bounded protoproduct, and
Pic-generated protoproduct.

Recall that the Picard spectrum of a symmetric monoidal ∞-category C, pic(C), is the
spectrum associated to the symmetric monoidal ∞-groupoid of invertible objects. The
functor pic preserves all limits and filtered colimits of symmetric monoidal ∞-categories by
[MS16, Proposition 2.2.3].

The Picard space functor is denoted by Pic; it is related to the spectrum-valued functor
pic by a canonical equivalence Pic ' Ω∞ pic. Given a symmetric monoidal ∞-category C,
we will write Loc Pic(C) for the localizing subcategory generated by Pic(C).

The goal of the next proposition is to identify the essential image of the functor F
constructed in Proposition 5.13 as the localizing subcategory on Pic(C).

Lemma 5.15. Let (Ci)i∈I be a collection of Pic-compactly generated symmetric monoidal
∞-categories, then there is a canonical equivalence of spectra

pic(
∏Pic

F
Ci) '

∏
F
pic Ci.

Proof. This follows from the proof of Lemma 3.56. �
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Proposition 5.16. Let (Ci)i∈I and (Ai)i∈I be as in Proposition 5.13 and also assume that
the Ai-based Adams spectral sequence for End(1Ci) collapses at the E2-page. The canonical
functor ∏Pic

F Ci
F // Tot(

∏Pic
F ModA⊗•+1

i
(Ci))

induces an equivalence of spectra

pic(
∏Pic
F Ci)

' // pic(Tot(
∏Pic
F ModA⊗•+1

i
(Ci))).

Proof. The proof is similar to the proof of Proposition 5.13. Applying pic to the symmetric
monoidal functor F gives a map of spectra

pic(
∏Pic
F Ci) // pic(Tot(

∏Pic
F ModA⊗•+1

i
(Ci))).

Since pic behaves well with respect to limits and filtered colimits, this is equivalent to∏
F
pic(Ci) '

∏
F

Tot pic(ModA⊗•+1
i

(Ci))→ Tot(
∏
F
pic(ModA⊗•+1

i
(Ci))).

Above the 1-line of the E2-page, the spectral sequence computing the homotopy groups
of pic(Ci) is the same as the Ai-based Adams spectral sequence computing the homotopy
groups of End(1Ci). By Lemma 5.7, there is a universal bound on the vanishing lines and
Proposition 5.10 may be applied. �

Remark 5.17. This proposition should hold under the weaker assumption that the spectral
sequence collapses at the Er-page.

Theorem 5.18. Let (Ci)i∈I and (Ai)i∈I be as in the statement of Proposition 5.16. There
is a canonical equivalence of symmetric monoidal stable ∞-categories∏Pic

F
Ci ' Loc Pic(Tot(

∏Pic

F
ModA⊗•+1

i
(Ci))).

Proof. There is a canonical colimit preserving functor∏Pic

F
Ci → Tot(

∏Pic

F
ModA⊗•+1

i
(Ci)),

which is fully faithful by Proposition 5.13.
By Proposition 5.16, the map is an equivalence after applying Pic(−). Proposition 3.59

implies that ∏Pic

F
Ci ' Loc Pic(

∏Pic

F
Ci).

Therefore, we get the desired equivalence. �

Lemma 5.19. Let C• and D• be cosimplicial ∞-categories and let f• : C• → D• be a map
that is degree-wise fully faithful. If f0 : C0 → D0 is an equivalence, then

Tot f• : Tot C• → TotD•

is an equivalence.

Proof. In case that all of the∞-categories D[k] are∞-groupoids this is a classical statement
about spaces. For the general case, it is enough to show that for every ∞-category T the
map

Tot(MapCat∞(T, C•))→ Tot(MapCat∞(T,D•))
is an equivalence. Since

MapCat∞(C,D) ' Fun(C,D)'
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and since Fun(T, •) preserves fully faithful maps and categorical equivalences, the lemma is
now reduced to the ∞-groupoid case. �

Recall that limits in the ∞-category of presentable ∞-categories and in the ∞-category
of presentably symmetric monoidal ∞-categories may be computed in Cat∞. Lemma 5.19
makes it clear that a further constraint on the collection (Ai)i∈I leads to a close relationship
between the Pic-generated protoproduct and the protoproduct.

Corollary 5.20. Let (Ci)i∈I and (Ai)i∈I be as in the statement of Proposition 5.16 and
also assume that the canonical map∏[

F
ModAi(Ci)

'−→
∏Pic

F
ModAi(Ci)

is an equivalence, then there is an equivalence of symmetric monoidal ∞-categories

Tot(
∏Pic

F
ModA⊗•+1

i
(Ci)) ' Tot(

∏[

F
ModA⊗•+1

i
(Ci))

and thus an equivalence of symmetric monoidal ∞-categories∏Pic

F
Ci ' Loc Pic(Tot(

∏[

F
ModA⊗•+1

i
(Ci))).

By Morita theory, we have the following corollary:

Corollary 5.21. Let (Ci)i∈I and (Ai)i∈I be as in the statements of Proposition 5.16 and
Corollary 5.20 and assume that Ci is monogenic for all i ∈ I, then there is a canonical
equivalence of symmetric monoidal ∞-categories∏Pic

F
Ci

'−→ Loc Pic Tot(
∏[

F
ModHom(1Ci ,A

⊗•+1
i )).

5.2. Descent for the E-local categories. The goal of this subsection is to show that
(Cp)p∈P = (Spn,p)p∈P and (Ap)p∈P = (En,p)p∈P satisfy the conditions of Corollary 5.21.
It is clear that Spn,p is a symmetric monoidal monogenic stable ∞-category. It remains to
show that En,p has finite vanishing-degree independent of p.

Let E = En,p and let M≤nfg (p) be the p-local moduli stack of formal groups of height

less than or equal to n. In [Mor85], Morava shows that the stabilizer group has finite
cohomological dimension n2 for large enough primes. Via the chromatic spectral sequence,
this implies the following result, a proof of which can be found for example in [Fra, Theorem
3.4.9].

Proposition 5.22. (Franke, Morava) The cohomological dimension of the stack M≤nfg (p)

is n2 + n for all p > n+ 1.

The E-based Adams spectral sequence is a spectral sequence of the form

Ext∗E∗E(E∗(X), E∗(Y )) =⇒ π∗HomSpE (X,Y ).

The finite cohomological dimension of M≤nfg (p) implies that, for any X and Y , there is
a horizontal vanishing on the E2-page of the spectral sequence with prime-independent
intercept (for large enough primes) of the vanishing line. For this conclusion, see [HS99,
Proof of Theorem 5.4].

Proposition 5.23. For p large enough, any height n, and any spectrum Y , there exists
a constant s0, independent of p and Y , such that the E-based Adams spectral sequence for
π∗(Y ) has a horizontal vanishing line of intercept s0 at the E2-page.
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Remark 5.24. Hopkins and Ravenel ([Rav92, Chapter 8]) proved that there is an r ∈ N so
that a horizontal vanishing line occurs on the Er-page independent of the choice of prime.

Lemma 5.25. For any ultrafilter F on P, there is an equivalence of symmetric monoidal
∞-categories ∏Pic

F
ModEn,p '

∏[

F
ModEn,p .

Proof. Baker–Richter [BR05] prove that the Picard group of ModEn,p is Z/2 (represented
by En,p and ΣEn,p). Thus the Pic-filtration and the cell filtration on ModEn,p agree and
the protoproducts are equivalent. �

Thus we may take (Cp)p∈P = (Spn,p)p∈P and (Ap)p∈P = (En,p)p∈P in Corollary 5.21 and
conclude the following:

Corollary 5.26. For any ultrafilter F on P, there is a canonical symmetric monoidal
equivalence of symmetric monoidal ∞-categories∏Pic

F
Spn,p ' Loc Pic(Tot(

∏[

F
ModE⊗•+1

n,p
)).

5.3. The algebraic model. Let E = En,p. We produce an∞-category that is an algebraic
analogue of Spn,p out of a model category of quasi-periodic complexes of E0E-comodules
first described in [Fra].

Let (A,Γ) be an Adams Hopf algebroid in the sense of [Hov04, Section 1.4], i.e., a
cogroupoid object in the category of commutative rings such that Γ is flat over A and satis-
fies a certain technical condition. Let (A,Γ)−Comod be the 1-category of (A,Γ)-comodules.
An introduction to this category is given in [Hov04, Rav86]. In particular (A,Γ)− Comod
is a Grothendieck abelian category. Furthermore, (A,Γ)−Comod has a natural symmetric
monoidal structure ⊗A = ⊗ with unit A, which is compatible with the usual symmetric
monoidal structure on ModA. Therefore, we get a symmetric monoidal adjunction

forget : (A,Γ)− Comod // A−Mod : −⊗AΓ.oo

An (A,Γ)-comodule L is invertible if the underlying A-module is invertible as an A-module.
Let A be a symmetric monoidal Grothendieck abelian category and let L be an invertible

object in A. Associated to this data, Barnes and Roitzheim [BR11] construct a category
of quasi-periodic chain complexes of objects in A. We recall their construction in the case
A = (A,Γ)− Comod. Given an invertible (A,Γ)-comodule L, let

C(L,2)((A,Γ)− Comod)

be the category of quasi-periodic chain complexes of (A,Γ)-comodules. The objects of this
category are pairs (X, q), where X is an unbounded complex of (A,Γ)-comodules and q is
an isomorphism

q : X[2] ∼= X ⊗A L.
Morphisms in C(L,2)((A,Γ)−Comod) are maps of complexes that respect the fixed isomor-
phism.

Let Ch((A,Γ) − Comod) be the category of complexes of (A,Γ)-comodules. By [BR11,
Lemma 1.2], there is an adjunction

P : Ch((A,Γ)− Comod) // C(L,2)((A,Γ)− Comod) :U,oo
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where U is the forgetful functor and P is the “periodization” functor

P (Y ) =
⊕
k∈Z

(Y ⊗ L⊗k[2k]).

There is a natural symmetric monoidal structure on C(L,2)((A,Γ)−Comod), the periodized
tensor product, such that P is symmetric monoidal. In particular, the unit of this symmetric
monoidal structure is P (A). Moreover, we obtain a projection formula in this context:

Lemma 5.27. Let A be a symmetric monoidal Grothendieck abelian category. In the situa-
tion of the above adjunction, for any X ∈ C(L,2)(A) and Y ∈ Ch(A), the natural morphism

(5.28) UX ⊗ Y // U(X ⊗ P (Y )),

is an equivalence. Here, the tensor product ⊗ has to be interpreted in the corresponding
categories.

Proof. This is a general categorical fact. The canonical map is constructed as the adjoint
of the composite

P (U(X)⊗ Y ) ' PU(X)⊗ P (Y ) // X ⊗ P (Y ),

using the counit of the adjunction (P,U) and the fact that P is symmetric monoidal. To
check it is an equivalence, it suffices to consider Y a compact generator of Ch(A), as both
P and U preserve arbitrary colimits. Such Y can be taken to be comodules which are finite
free E0-modules, from which the claim follows immediately. �

Following Barnes and Roitzheim [BR11], who were building on work of Franke [Fra] and
Hovey [Hov04], we are now ready to construct the model category which gives rise to our
algebraic model for the E-local category.

Theorem 5.29. Let L be an invertible object in (E0, E0E) − Comod. There is a model
structure on the category of quasi-periodic chain complexes of E0E-comodules,

C(L,2)((E0, E0E)− Comod),

whose weak equivalences are quasi-isomorphisms of the underlying maps of chain complexes,
and which satisfies the following properties:

(1) The resulting model category is cofibrantly generated, proper, stable, and symmetric
monoidal.

(2) There is a Quillen adjunction

U : C(L,2)((E0, E0E)− Comod) � Ch((E0, E0E)− Comod) :P

with symmetric monoidal left adjoint.
(3) For primes p > n + 1, this model category is monogenic, i.e., compactly generated

by its tensor unit P (E0).
(4) For primes p > n+ 1, the object P (E0E) is faithfully flat.
(5) For primes p > n+ 1 and for all objects X, P (E0E)⊗X is fibrant.

We will refer to this model structure as the quasi-projective model structure.

Proof. To ease notation, for the remainder of this proof we will write A for the Grothendieck
abelian category (E0, E0E)−Comod of (E0, E0E)-comodules. The required model structure
was constructed by Barnes and Roitzheim [BR11], building on earlier work of Hovey [Hov04].
We start by recalling the data of the quasi-projective model structure. To this end, we need
to introduce an auxiliary class of morphisms.
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Let P be the set of (representatives of) comodules M ∈ A such that the underlying
E0-module is finitely presented and projective; note that these are precisely the compact
objects of the abelian category A. A map f : X → Y in C(L,2)(A) is called a P-fibration
or a P-equivalence if, for all P ∈ P, A(P, f) (using the notation of [BR11]) is a degree-wise
surjection or quasi-isomorphism, respectively. The class of P-cofibrations is defined to be the
collection of those morphisms in C(L,2)(A) that have the left lifting property with respect
to all P-fibrations which are also P-equivalences. In fact, these classes form the P-model
structure. The weak equivalences, cofibrations, and fibrations of the quasi-projective model
structures are obtained from the P-model structure via left Bousfield localization along the
quasi-isomorphisms; explicitly:

• A morphism f : X → Y in C(L,2)(A) is a weak equivalence if and only if the under-
lying morphism U(f) of chain complexes is a quasi-isomorphism

• The cofibrations are the P-cofibrations.
• The fibrations are then determined by the previous two classes.

The analogous construction can be carried out in Ch(A) and this gives rise to the quasi-
projective model structure. In particular, the forgetful functor U : C(L,2)(A) → Ch(A)
preserves fibrations and weak equivalences. Claim (1) is then precisely the content of [BR11,
Theorem 6.9]. The free-forgetful adjunction

P : Ch(A) // C(L,2)(A) :Uoo

can be promoted to a Quillen adjunction by [BR11, Theorem 6.5].
In order to prove Claims (2), (3), and (4), we compare the quasi-projective model struc-

ture to Hovey’s homotopy model structure on Ch(A). In general, this model structure sits
between the P-model structure and the quasi-projective model structure on Ch(A), in the
sense that we have inclusions

(P − equivalences) ⊆ (homotopy equivalences) ⊆ (quasi-isomorphisms).

For the details of its construction, we refer to [Hov04]. Using the finite cohomological

dimension of M≤nfg (p) for p > n + 1, Proposition 5.22, it can be shown that the homotopy

model structure and the quasi-projective model structure on Ch(A) coincide for p > n+ 1,
as shown in the proof of Theorem 4.11 in [BH]. This allows us to import the key properties
of the homotopy model structure proven by Hovey to the quasi-projective model structure.

From now on, assume that p > n + 1. Since E is a Landweber exact ring spectrum
of finite height n, [Hov04, Corollary 6.7] implies that the homotopy model category and
hence the quasi-projective model category Ch(A) is compactly generated by its unit E0.
By adjunction, it follows that the same is true for the quasi-projective model structure on
C(L,2)(A), with the compact generator given by the tensor unit P (E0). This proves Claim
(2).

Recall that an object M ∈ C(L,2)(A) is faithfully flat (with respect to the quasi-projective
model structure) whenever the underived endofunctor M ⊗ − preserves and reflects weak
equivalences. Note that the tensor product ⊗ is balanced, so it does indeed suffice to work
with the functor M ⊗ −. Now suppose f : X → Y is a weak equivalence in C(L,2)(A) and
consider the induced morphism

P (E0E)⊗ f : P (E0E)⊗X // P (E0E)⊗ Y.

Using the projection formula (5.28), this map is a weak equivalence if and only if E0E⊗Uf
is a weak equivalence in Ch(A). This is the case if E0E ⊗ Uf is a quasi-isomorphism and
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this can be detected in Ch(E0−Mod) (with the projective model structure). Therefore, the
flatness claim reduces to the analogous statement in Ch(E0 −Mod), where it is clear.

By a long exact sequence argument, we can reduce to showing that, for any X ∈
C(L,2)(A), H∗X = 0 if H∗(P (E0E) ⊗ X) = 0. Applying the projection formula (5.28)
to the assumption yields H∗(E0E ⊗ UX) = 0. Therefore,

0 ' RhomCh(A)(E0, E0E ⊗ UX) ' RhomCh(E0−Mod)(E0, UX),

thus H∗(X) = 0 as claimed. Taken together, this implies that P (E0E) is faithfully flat.
Finally, to show that P (E0E) ⊗ X is fibrant for all X (Claim (5)), we use a special

case of Hovey’s fibrancy criterion [Hov04, Theorem 5.2.3]: Any complex of relative injective
comodules is fibrant in the homotopy model structure on Ch(A). Indeed, P (E0E) ⊗ X is
fibrant in the quasi-projective model structure on C(L,2)(A) if U(P (E0E)⊗X) = E0E⊗UX
is fibrant in the homotopy model structure on Ch(A). But E0E is a relative injective
comodule by [Hov04, Lemma 3.1.3]. �

Our algebraic analogue of the ∞-category Spn,p is the underlying ∞-category of such a
model category.

Definition 5.30. Let L = π2E. We define Frn,p = C(L,2)((E0, E0E) − Comod)c[W−1] to

be the underlying symmetric monoidal ∞-category of C(L,2)((E0, E0E) − Comod) in the
sense of [Lura, Example 4.1.3.6].

We will also make use of

Comodn,p = Ch((E0, E0E)− Comod)c[W−1],

the ∞-category of E0E-comodules. Let E0E be the object in Comodn,p which is the image
of E0E ∈ Ch((E0, E0E)− Comod) under the localization functor. Since the localization is
lax and E0E is a commutative algebra in Ch((E0, E0E)− Comod), E0E is a commutative
algebra in Comodn,p.

Applying these definitions, we get the following∞-categorical corollary of Theorem 5.29.

Corollary 5.31. Assume that p > n+ 1. The ∞-categories Frn,p and Comodn,p are mono-
genic presentably symmetric monoidal stable ∞-categories. Moreover, there is an induced
adjunction of ∞-categories

P : Comodn,p
// Frn,p :U,oo

in which P is symmetric monoidal. Finally, the spectrum of maps between E0 and Y⊗E0E
⊗k

for any Y ∈ Ch((E0, E0E)− Comod) can be computed as

homCh((E0,E0E)−Comod)(E0, Y ⊗ E0E
⊗k)

the chain complex of maps in the model category Ch((E0, E0E)− Comod).

Proof. Presentability follows from [Lura, Proposition 1.3.4.22]. Theorem 5.29 implies that
the ∞-category Frn,p is symmetric monoidal, stable, and monogenic (see [Lura, Section
4.1.3]). [MG] implies that Quillen adjunctions induce adjunctions of ∞-categories. [Hin16,
Proposition 3.2.2] shows that since P is symmetric monoidal, the induced P is symmetric
monoidal. The last sentence of the statement follows from the fact that E0 is cofibrant and
Y ⊗ E0E

⊗k is fibrant. �

Remark 5.32. It is worth noting that Franke’s category Frn,p is not equivalent to Spn,p as
a symmetric monoidal ∞-category for n ≥ 1 and any prime p. One way to see this is based
on the following observation: On the one hand, since Frn,p is constructed from a category



66 TOBIAS BARTHEL, TOMER M. SCHLANK, AND NATHANIEL STAPLETON

of chain complexes, it is an HZ-linear category. On the other hand, the internal mapping
objects of Spn,p are En,p-local, so if they were also HZ-linear, then they would have to be
rational, forcing n = 0.

5.4. Descent for Franke’s categories. Let (Bp,Σp) = (π0(En,p), π0(En,p ⊗ En,p)) and
let

Ap = P (π0(En,p ⊗ En,p)) = P (Σp).

Since P is symmetric monoidal, Ap is a commutative algebra in Frn,p. By Theorem 5.29,
since P (E0E) is faithfully flat, −⊗Ap is conservative.

Lemma 5.33. The collection (Ap)p∈P is uniformly descendable.

Proof. By Lemma 5.9, it is enough to show that the collection (Σp)p∈P , where Σp is an

object in Comodn,p, is uniformly descendable. We will show that the vanishing-degree of
Σp is bounded independent of p. For X and Y objects in Comodn,p, consider the spectral

sequence associated to the cosimplicial spectrum

HomComodn,p(X,Y ⊗ (Σp)
⊗•+1).

But as the cohomological dimension of the stack represented by (Bp,Σp) is n2 + n for large
enough primes (Proposition 5.22) there is a horizontal vanishing line at the E2-page with
intercept n2 + n (which does not depend on p). �

Lemma 5.34. There is an equivalence of cosimplicial E∞-ring spectra

HomFrn(1Frn , A
⊗•+1
p ) ' (E⊗•+1

n,p )?.

In particular, the associated spectral sequence collapses at the E2-page.

Proof. Because P is symmetric monoidal,

1Frn ' P (1Comodn,p) ' P (Bp).

Thus

HomFrn(1Frn , A
⊗•+1
p ) ' HomFrn(P (Bp), P (Σp)

⊗•+1)

' HomComodn,p(Bp, U(P (Σp
⊗•+1)))

' HomComodn,p(Bp, UP (Σp
⊗•+1))

' homCh((Bp,Σp)−Comod)(Bp, UP (Σ⊗•+1
p ))

' homCh((Bp,Σp)−Comod)(Bp, UP (Bp)⊗ (Σ⊗•+1
p ))

' homCh(Bp−mod)(Bp, UP (Bp)⊗ (Σ⊗•p ))

' UP (Bp)⊗Bp (Σ⊗•p )

' UP (Bp)⊗Bp (E⊗•+1
n,p )0

' (En,p)? ⊗Bp (E⊗•+1
n,p )0

' (E⊗•+1
n,p )?.

From the first to the second line we use the (U,P )-adjunction and that P is monoidal. From
the second to the third line we use that Σp is flat and that UP preserves weak equivalences.
From the third to fourth line we use that UP (Σ⊗•+1

p ) is a cosimplicial fibrant object and
E0 is cofibrant. From the fourth to fifth line we use Lemma 5.27. From the fifth to the
sixth line we use the free-forgetful adjunction between (Bp,Σp)-comodules and Bp-modules.
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From the sixth to the seventh line we use the enrichment of Ch(Bp −mod) in itself. From
the seventh to the eighth line we use the flatness of Σp over Bp. From the eighth to the ninth
line we use the definition of (−)? from Definition 4.2 and the fact that L = π2(En,p). �

Lemma 5.35. The Picard group of ModE? is Z/2 (independent of p).

Proof. This follows from Baker–Richter [BR05]. Their result makes use of the fact that E?
is an even periodic E∞-ring spectrum with regular local Noetherian π0. �

Corollary 5.36. There is a canonical symmetric monoidal equivalence of ∞-categories∏[[

F
Mod(En,p)?

'−→
∏Pic

F
Mod(En,p)? .

Now Corollary 5.21 applies to the collections (Cp)p∈P = (Frn,p)p∈P and (Ap)p∈P :

Corollary 5.37. There is a canonical symmetric monoidal equivalence of symmetric monoidal
∞-categories ∏Pic

F
Frn,p

'−→ Loc Pic Tot(
∏[

F
Mod(E⊗•+1

n,p )?
).

5.5. The proof of the main result. We promote Theorem 4.20, the main result of Sec-
tion 4, to an equivalence of ∞-categories:

Theorem 5.38. Let F be a non-principal ultrafilter on P. There is a symmetric monoidal
equivalence of cosimplicial compactly generated Q-linear stable ∞-categories∏[

F
ModE⊗•+1

n,p
'
∏[

F
Mod(E⊗•+1

n,p )?
.

Proof. Theorem 4.20 produces a cosimplicial E∞-ring spectrum∏
F
E⊗•+1
n,p '

∏
F

(E⊗•+1
n,p )?.

Applying modules Mod(−) to this gives a symmetric monoidal equivalence of cosimplicial
∞-categories

Mod∏
FE
⊗•+1
n,p

' Mod∏
F (E⊗•+1

n,p )?
.

Theorem 3.63 applies to this to give a symmetric monoidal equivalence∏[[

F
ModE⊗•+1

n,p
'
∏[[

F
Mod(E⊗•+1

n,p )?
.

Since the E∞-ring spectra are even periodic, Corollary 3.61 applies to give a symmetric
monoidal equivalence ∏[

F
ModE⊗•+1

n,p
'
∏[

F
Mod(E⊗•+1

n,p )?
. �

Finally, we may prove the main result of the paper:

Theorem 5.39. There is a symmetric monoidal equivalence of compactly generated Q-linear
stable ∞-categories ∏Pic

F
Spn,p '

∏Pic

F
Frn,p,

for any non-principal ultrafilter F on the prime numbers.
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Proof. By Theorem 5.38, there is a cosimplicial equivalence∏[

F
ModE⊗•+1

n,p
'
∏[

F
Mod(E⊗•+1

n,p )?
.

This induces a symmetric monoidal equivalence of ∞-categories

Loc Pic Tot
∏[

F
ModE⊗•+1

n,p
' Loc Pic Tot

∏[

F
Mod(E⊗•+1

n,p )?
.

Now applying Corollary 5.26 and Corollary 5.37 gives the desired equivalence∏Pic

F
Spn,p '

∏Pic

F
Frn,p . �

6. Applications

In this section, we give an application of the equivalence of Theorem 5.39 to local gener-
alized Moore spectra. We show that, for large enough primes, such spectra exist and admit
coherent multiplicative structure.

6.1. Compact ∞-operads. Let Op∞ be the ∞-category of ∞-operads, introduced in
[Lura, Section 2]. Overloading notation, we will write ⊗ for the Boardman–Vogt tensor
product of∞-operads constructed in [Lura, Section 2.2.5]. Let Cat⊗∞ = CAlg(Cat∞) be the
∞-category of symmetric monoidal ∞-categories.

The next result summarizes the salient features of Op∞ needed in this section.

Proposition 6.1. The ∞-category Op∞ has the following features:

(1) Op∞ is a presentable ∞-category.
(2) The forgetful functor U : Cat⊗∞ → Op∞ admits a left adjoint, the monoidal envelope

functor.
(3) The functor U preserves filtered colimits.

Proof. The first item is a consequence of [Lura, Proposition 2.1.4.6], while the second one
is proven in [Lura, Section 2.2.4]. In order to see that U preserves filtered colimits, consider
the commutative diagram

Cat⊗∞
U //

U1 $$

Op∞

U2

��
Cat∞,

in which the vertical arrows are the canonical forgetful functors. The functor U1 : Cat⊗∞ =
CAlg(Cat∞) → Cat∞ preserves filtered colimits by [Lura, Proposition 3.2.3.1]. In [GH15,
Theorem 3.3.1], it is shown that U2 creates filtered colimits, thus it follows that U preserves
filtered colimits. �

As an immediate consequence of Proposition 6.1 (2) and (3), we obtain:

Corollary 6.2. The forgetful functor U : Cat⊗∞ → Op∞ preserves ultraproducts.

An∞-operad O is called compact if it is a compact object in Op∞. We would like to have
a recognition principle for compact∞-operads. To this end we shall recall the description of
Op∞ as the underlying ∞-category of a model structure on the category of ∞-preoperads.

Let sSet+ be the 1-category of marked simplicial sets and let F = (Fin∗,M) ∈ sSet+ be
the nerve of Fin∗ with the inert edges marked. Recall from [Lura, Section 2.1.4] that the
category of ∞-preoperads POp∞ is defined to be sSet+

/F . For an object X̄ = (X → F ) in
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POp∞, we denote by X the underlying simplicial set and by U(X̄) the underlying object
in sSet/Fin∗ given by forgetting the marked simplices. The category POp∞ is simplicially

enriched and, given objects X̄ and Ȳ , we will write map(X̄, Ȳ ) for the simplicial mapping
space.

Proposition 6.3. The category POp∞ admits a left proper combinatorial simplicial model
structure with the following properties:

(1) A morphism f : X̄ → Ȳ in POp∞ is a cofibration if and only if it induces a
monomorphism between the underlying simplicial sets X and Y .

(2) X̄ = (X → F ) is fibrant if and only if U(X̄) is an ∞-operad and the marked edges
in X̄ are the inert edges.

(3) Fibrant objects in POp∞ are closed under filtered colimits.
(4) The localization functor

R : POp∞ → Op∞

is essentially surjective, commutes with filtered colimits, and preserves compact ob-
jects.

(5) POpω∞ consists of the objects X̄ such that X has finitely many non-degenerate sim-
plices.

(6) Op∞ is compactly generated by the objects in R(POpω∞).

Proof. The model structure on POp∞ is constructed in [Lura, Proposition 2.1.4.6], where
properties (1) and (2) are explicitly stated. Part (3) follows from [Lura, Proposition B.1.6]
and the observation that all generating P-anodyne maps have finite source and target. Since
R is a localization functor, it is essentially surjective.

The model structure on POp∞ is defined by applying [Lur09, A.2.6.15]. Thus by [Lur09,
Remark A.2.6.16], weak equivalences are preserved under filtered colimits and so the functor
R preserves filtered colimits. Next we show that R preserves compact objects. Let X̄ ∈
POpω∞ and let F : I → Op∞ be a filtered diagram together with a choice of lift F̂ : I →
POp∞ such that F̂ (i) is fibrant for all i ∈ I. Then we have

Map(R(X̄), colimI F (i)) ' map(X̄, colimI F̂ (i))

' colimI map(X̄, F̂ (i))

' colimI Map(R(X̄), F (i)).

Part (5) follows from the definition of POp∞. To get Part (6) we combine the earlier parts
together with the fact that POp∞ is compactly generated as it is an over category over
sSet+. �

In light of Part (5) of Proposition 6.3, we call an∞-operad O finite if it is in the essential
image of R.

Corollary 6.4. An∞-operad O is compact if and only if it is a retract of a finite∞-operad.

Corollary 6.5. If O and O′ are compact ∞-operads, then O⊗O′ is a compact ∞-operad.

Proof. [Lura, Notation 2.2.5.5 and Proposition 2.2.5.13] show that the tensor product of
finite ∞-preoperads is finite, so the claim follows from Corollary 6.4 �

In [Lura, Remark 4.1.4.8], Lurie constructs an ∞-operad O(m), which is a non-unital
version of the associative operad. It is constructed by applying R to an object in POp∞
with finitely many non-degenerate simplices. Thus O(m) is compact by Parts (4) and
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(5) of Proposition 6.3. In [Lura, Corollary 2.3.1.8, Proposition 2.3.1.9], Lurie produces a
unitalization functor for ∞-operads and proves that it is given by −⊗E0. Define Am to be
the ∞-operad O(m)⊗ E0.

Example 6.6. For any m, the operad Am is compact.

Proof. By [Lura, Example 2.1.4.9], E0 is compact. Now Am is compact by Corollary 6.5. �

6.2. Existence of multiplicative local generalized Moore spectra. In Theorem 5.38
we established a symmetric monoidal equivalence of cosimplicial compactly generated Q-
linear stable ∞-categories

Φ•+1 :
∏[
F ModE⊗•+1

n,p

' // ∏[
F Mod(E⊗•+1

n,p )?
.

In this subsection, we describe the compatibility of this equivalence with the homotopy
groups functor and use this to study the existence of En,p-local generalized Moore spectra
and their multiplicative structures.

For any p and n, there are canonical isomorphisms ϕp : π0En,p ∼= π0(En,p)?. If F is any
ultrafilter on P, these isomorphisms assemble into an isomorphism ϕ =

∏
Fϕp :

∏
Fπ0En,p ∼=∏

Fπ0(En,p)? and we denote by

Φ′1 : (
∏
Fπ0En,p)−Modgraded // (

∏
Fπ0(En,p)?)−Modgraded

the induced equivalence between the associated (1-)categories of graded modules.

Proposition 6.7. For any non-principal ultrafilter F on P, there is a commutative diagram

(6.8)
∏[
F ModEn,p

' //

Φ1 '
��

Mod∏
FEn,p

π∗ //

'

��

(
∏
Fπ0En,p)−Modgraded

Φ′1 '
��∏[

F Mod(En,p)? '
// Mod∏

F (En,p)? π∗
// (
∏
Fπ0(En,p)?)−Modgraded .

Proof. The result follows by unwinding the proof of Theorem 5.38. Indeed, the middle
vertical equivalence arises from an equivalence of E∞-ring spectra

φ :
∏
F (En,p)?

' // ∏
FEn,p.

The equivalence Φ1 is then defined to make the left square commute, so it remains to consider
the right square. By construction, φ is induced from a canonical map

∏
FHπ0En,p →∏

FEn,p, which fits into a commutative diagram∏
Fπ0En,p

ϕ

∼=
//

∼=
��

∏
Fπ0(En,p)?

∼=
��

π0

∏
FEn,p

π0φ

∼=
// π0

∏
F (En,p)?,

where the vertical isomorphisms are witnessing the fact that π0 commutes with ultraprod-
ucts. It follows that Φ′1 is canonically equivalent to the equivalence induced by π0φ, which
in turn makes the right square in (6.8) commute. �
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Informally speaking, the above proposition shows that the effect of Φ1 on the homotopy
groups of the unit is equivalent to the effect of the ultraproduct of the coordinatewise
isomorphisms ϕp : π0En,p ∼= π0(En,p)?. This is in sharp contrast to the construction of the
equivalence φ, which only exists after applying the ultraproduct at a non-principal ultrafilter.

Definition 6.9. Let I = (i0, . . . , ik−1) be a sequence of non-negative integers and fix a
height n and prime p. An En,p-local generalized Moore spectrum of type I is a compact

En,p-local spectrum Mloc
n,p(I) with (En,p)∗M

loc
n,p(I) ∼= (En,p)∗/(p

i0 , ui11 , . . . , u
ik−1

k−1 ).

Theorem 6.10. Let O be a compact ∞-operad and n ≥ 0 an integer. Given a sequence
I = (i0, . . . , ik−1) of non-negative integers, there exists an integer N = N(O, n, I) such that,
for all primes p ≥ N , the En,p-local generalized Moore spectrum Mloc

n,p(I) of type I exists
and admits the structure of an O-algebra.

Proof. For every height n, prime p, and sequence I as above, the strict commutative ring

(En,p)0/(p
i0 , ui11 , . . . , u

ik−1

k−1 ) in ((En,p)0, (En,p)0(En,p))− Comod lifts to an object

Mloc
n,p(I)alg = (En,p)?/(p

i0 , ui11 , . . . , u
ik−1

k−1 ) ∈ CAlg(Frn,p).

Since the objects Mloc
n,p(I)alg are compact and have the structure of E∞-algebras, they give

rise to a map of ∞-operads

[Mloc
n,p(I)alg]F : E∞ // ∏

p∈P Frωn,p // ∏
F Frωn,p // (

∏ω
F Frn,p)

ω.

Since Mloc
n,p(I)alg can be built out of 2k many cells, independently of p, [Mloc

n,p(I)alg]F factors
through the symmetric monoidal inclusion (see Lemma 3.46)

(
∏Pic
F Frn,p)

ω // (
∏ω
F Frn,p)

ω.

Restricting along the unique map O → E∞ gives rise to an O-algebra in (
∏Pic
F Frn,p)

ω,
which we will also denote by [Mloc

n,p(I)alg]F . Let Φ be the equivalence of Theorem 5.39 and
consider the diagram
(6.11)

O //

��

(
∏Pic
F Frn,p)

ω //

Φ−1 '
��

∏[
F Modω(En,p)?

π∗ //

(Φ1)−1 '
��

(
∏
Fπ0(En,p)?)−Modgraded

(Φ′1)−1 '
��

(
∏Pic
F Spn,p)

ω //
� _

��

∏[
F ModωEn,p

π∗ //
� _

��

(
∏
Fπ0En,p)−Modgraded

∏
p∈U Spωn,p // ∏

F Spωn,p // ∏
F ModωEn,p .

The top central square commutes by the construction of the symmetric monoidal equivalence
Φ, while the commutativity of the top right square is the content of Proposition 6.7. The
indicated arrows are symmetric monoidal inclusions by Lemma 3.46, and it follows that the
bottom square commutes as well.

The ultraproduct
∏
F Spωn,p can be computed in Cat⊗∞, the ∞-category of symmetric

monoidal ∞-categories, and hence in Op∞ by Corollary 6.2, so we obtain a map of ∞-
operads

O
[Mloc

n,p(I)alg]F−−−−−−−−−→ (
∏Pic

F
Frn,p)

ω Φ−1

−−−→ (
∏Pic

F
Spn,p)

ω −→
∏
F

Spωn,p .
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Since O is a compact∞-operad, there exists U ∈ F and the dashed factorization in Diagram
(6.11). That is, there is an O-algebra in

∏
p∈U Spωn,p corresponding to [Mloc

n,p(I)alg]F . For

p ∈ U , we will denote the corresponding O-algebra in Spωn,p by Mloc
n,p(I).

It remains to identify the En,p-homology of the underlying object of Mloc
n,p(I). To this

end, it suffices to compute the composite

O // (
∏Pic
F Spn,p)

ω // ∏[
F Modω(En,p)

π∗ // (
∏
Fπ0(En,p))−Modgraded

From the commutativity of the top part of Diagram (6.11), we deduce that this is isomorphic

to
∏
F (En,p)∗/(p

i0 , ui11 , . . . , u
ik−1

k−1 ). Thus there exists V ⊆ U with V ∈ F such that, for all

p ∈ V , Mloc
n,p(I) has the desired En,p-homology.

Applying the above procedure to every non-principal ultrafilter, the claim follows from
the fact that the intersection of all non-principal ultrafilters on P is the Frechet filter on
P. �

Specializing to the associative∞-operad Am, which is compact by Example 6.6, we obtain
the existence of associative multiplicative structure on the local generalized Moore spectra
for large enough primes.

Corollary 6.12. Let n,m ≥ 0 and let I = (i0, . . . , ik−1) be a k-tuple of natural numbers,
there is an integer N = N(n, I,m) such that for all primes p ≥ N the generalized Moore
spectrum Mloc

n,p(I) exists and admits the structure of an Am-algebra spectrum.
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[JO12] Niles Johnson and Angélica M. Osorno, Modeling stable one-types, Theory Appl. Categ. 26

(2012), No. 20, 520–537. MR 2981952 49
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