Quiz 3

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Find the equation of the plane through the point $(1,-1,2)$ and with normal vector $3 \mathbf{i}+7 \mathbf{j}-\mathbf{k}$.

Solution: From the normal vector we know that the equation of the plane is of the form

$$
3 x+7 y-z=d
$$

Plugging the given point in gives

$$
d=3(1)+7(-1)-(2)=-6
$$

Hence the equation of the plane is

$$
3 x+7 y-z=-6
$$

2. (a) (2 points) Find the vector equation of the line through the point $(1,2,1)$ and perpendicular to the plane $2 x-2 y-3 z=2$.

Solution: The normal vector of the plane gives the direction of the line. It follows that the vector equation of the line is

$$
\mathbf{r}=\langle 1,2,1\rangle+t\langle 2,-2,-3\rangle .
$$

(b) (1 point) Find the symmetric equations of the line from part (a).

Solution: Rearranging the information from above gives

$$
\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z-1}{-3}
$$

