Quiz 8

Quiz 8

Name: _

Section and/or TA: _____

Answer all questions in a clear and concise manner. Unsupported answers will receive *no credit*.

1. (3 points) Consider the lamina *D* which is defined as the region of the *xy*-plane

$$x \ge 0$$
, $y \ge 0$, $x^2 + y^2 \le 4$,

with density at a point (x, y) equal to the distance from (x, y) to the origin. Set up and **compute** an interated integral in polar coordinates which calculates the mass of this lamina.

Solution: The region *D* is a polar rectangle with $0 \le r \le 2$ and $0 \le \theta \le \pi/2$. The density function in polar coordinates is given by $\rho(r, \theta) = r$. Hence the mass is given by the double integral

$$\iint_D \rho(x,y) \, dA = \int_0^{\pi/2} \int_0^2 r \cdot r \, dr \, d\theta = \int_0^{\pi/2} \frac{1}{3} (2^3) d\theta = \frac{4\pi}{3}.$$

2. (2 points) **Set up** an interated integral which computes the surface area of the function f(x, y) = 8 - 4x - 2y on the region bounded by the lines y = 4 - 2x, x = 0, and y = 0. Do not simplify.

Solution: We compute $f_x(x,y) = -4$, $f_y(x,y) = -2$, so the surface area is given by

$$\iint_D \sqrt{f_x^2 + f_y^2 + 1} \, dA = \int_0^2 \int_0^{4-2x} \sqrt{16 + 16 + 1} \, dy \, dx.$$