Quiz 8

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (3 points) Consider the lamina D which is defined as the region of the $x y$-plane

$$
x \geq 0, \quad y \geq 0, \quad x^{2}+y^{2} \leq 4
$$

with density at a point (x, y) equal to the distance from (x, y) to the origin. Set up and compute an interated integral in polar coordinates which calculates the mass of this lamina.

Solution: The region D is a polar rectangle with $0 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$. The density function in polar coordinates is given by $\rho(r, \theta)=r$. Hence the mass is given by the double integral

$$
\iint_{D} \rho(x, y) d A=\int_{0}^{\pi / 2} \int_{0}^{2} r \cdot r d r d \theta=\int_{0}^{\pi / 2} \frac{1}{3}\left(2^{3}\right) d \theta=\frac{4 \pi}{3}
$$

2. (2 points) Set up an interated integral which computes the surface area of the function $f(x, y)=8-4 x-2 y$ on the region bounded by the lines $y=4-2 x, x=0$, and $y=0$. Do not simplify.

Solution: We compute $f_{x}(x, y)=-4, f_{y}(x, y)=-2$, so the surface area is given by

$$
\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A=\int_{0}^{2} \int_{0}^{4-2 x} \sqrt{16+16+1} d y d x
$$

