MA 213 Worksheet \#13
 Section 14.6
 10/9/18

1 Find the directional derivative of f at the given point in the direction indicated by the angle θ. 14.6.5 $f(x, y)=\sqrt{2 x+3 y}, \quad(3,1), \quad \theta=-\pi / 6$

2 (a) Find the gradient of f.(b) Evaluate the gradient at the point P. (c) Find the rate of change of f at P in the direction of the vector \mathbf{u}.
14.6.10 $f(x, y, z)=y^{2} e^{x y z}, \quad P(0,1,-1), \quad \mathbf{u}=\left\langle\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right\rangle$

3 Find the directional derivative of the function at the given point in the direction of vector \mathbf{v}.
14.6.13 $g(s, t)=s \sqrt{t}, \quad(2,4), \quad \mathbf{v}=2 \mathbf{i}-\mathbf{j}$
14.6.15 $f(x, y, z)=x y^{2} \tan ^{-1} z, \quad(2,1,1), \quad \mathbf{v}=\langle 1,1,1\rangle$

4 Find the maximum rate of change of f at the given point and the direction in which it occurs.
14.6.22 $f(x, y)=\sin (x y), \quad(1,0)$
14.6.23 $f(x, y, z)=x \ln (y z), \quad\left(1,2, \frac{1}{2}\right)$

5 14.6.33 Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=5 x^{2}-3 x y+x y z$.
(a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k}$.
(b) In which direction does V change most rapidly at P ?
(c) What is the maximum rate of change at P ?

6 Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specific point.
14.6.42 $x=y^{2}+z^{2}+1, \quad(3,1,-1)$
14.6.44 $x y+y z+z x=5, \quad(1,2,1)$

7 14.6.40 The second directional derivative of $f(x, y)$ is

$$
D_{\mathbf{u}}^{2} f(x, y)=D_{\mathbf{u}}\left[D_{\mathbf{u}} f(x, y)\right]
$$

(a) If $\mathbf{u}=\langle a, b\rangle$ is a unit vector and f has continuous second derivatives, show that

$$
D_{\mathbf{u}}^{2} f=f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}
$$

(b) Find the second directional derivative of $f(x, y)=x e^{2 y}$ in the direction of $\mathbf{v}=\langle 4,6\rangle$.

