MA 213 Worksheet \#15
 Section 14.8
 10/16/18

1 14.8.3 $\mathcal{G} 5$ Use Lagrange multipliers to find the absolute maximum and minimum values of the function subject to the given constraint.
(a) $f(x, y)=x^{2}-y^{2}, \quad x^{2}+y^{2}=1$
(b) $f(x, y)=x y, \quad 4 x^{2}+y^{2}=8$

2 14.8.17 Find the extreme value of $f(x, y, z)=y z+x y$ subject to the constraints $x y=1$ and $y^{2}+z^{2}=1$.

3 14.8.29 Use Lagrange multipliers to prove that the rectangle of maximum area that has a given perimeter p is a square.

4 Find the absolute maximum and the absolute minimum values of $f(x, y)=x y-4 x$ in the region bounded by the x-axis and the parabola $y=16-x^{2}$.

5 Consider a rectangular box in the first octant with faces parallel to the coordinate planes, with one vertex at $(0,0,0)$ and the diagonally opposite vertex on the plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

Find the maximum volume of such a box in terms of a, b and c.

