MA 213 Worksheet \#19

Section 15.6
11/1/18

1 15.6.3 Evaluate the following iterated integrals: $\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$

2 15.6.9,13,15 Evaluate the following triple integrals:
(a) $\iiint_{E} y \mathrm{~d} V$, where $E=\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq x, x-y \leq z \leq x+y\}$
(b) $\iiint_{E} 6 x y \mathrm{~d} V$, where E is the (three dimensional) region that lies under the plane $z=$ $1+x+y$ and above the (two dimensional) region in the $x y$-plane that is bounded by the curves $y=\sqrt{x}, y=0$ and $x=1$.
(c) $\iiint_{T} y^{2} \mathrm{~d} V$, where T is the solid tetrahedron with vertices $(0,0,0),(2,0,0),(0,2,0)$ and $(0,0,2)$.

3 15.6.21 Use a triple integral to find the volume of the solid enclosed by the cylinder $y=x^{2}$ and the planes $z=0$ and $y+z=1$.

4 15.6.27,35
(a) Sketch the solid whose volume is given by the integral $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 z} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x$
(b) Write the five other iterated integrals that are equal to the following iterated integral: $\int_{0}^{1} \int_{y}^{1} \int_{0}^{y} f(x, y, z) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y$

5 15.6.37 Evaluate the following triple integral using only geometric interpretation and symmetry,

$$
\iiint_{C}\left(4+5 x^{2} y z^{2}\right) \mathrm{d} V, \text { where } C \text { is the cylindrical region } x^{2}+y^{2} \leq 4,-2 \leq z \leq 2
$$

6 15.6.41 Find the mass and center of mass of a solid tetrahedron bounded by the planes $x=0$, $y=0, z=0$ and $x+y+z=1$ with density function $\rho(x, y, z)=y$.

7 15.6.43 Find the moments of inertia for a cube with side length L, one vertex at the origin and three edges along the coordinate axes and constant density k.

