MA 213 Worksheet \#22
 Section 15.9
 11/13/18

1 Find the Jacobian of the transformation.

$$
\begin{array}{llll}
15.9 .3 & x=s \cos (t) & y=s \sin (t) & \\
15.9 .5 & x=u v & y=v w & z=w u
\end{array}
$$

2 15.9.9 Find the image of the set S under the given transformation.
S is the triangular region with vertices $(0,0),(1,1),(0,1)$
$x=u^{2}, y=v$

3 15.9.11 A region R in the $x y$-plane is given. Find equations for a transformation T that maps a rectangular region in S in the $u v$-plane onto R, where the sides of S are parallel to the u and v axis.
R is bounded by $y=2 x-1, y=2 x+1, y=1-x, y=3-x$

4 15.9.15 Use the given transformation to evaluate the integral.
$\iint_{R}(x-3 y) d A$, where R is the triangular region with vertices $(0,0),(2,1)$ and $(1,2)$; $x=2 u+v, y=u+2 v$

5 15.9.19 Use the transformation to evaluate the integral:

$$
\iint_{R} x y d A
$$

where R is the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1, x y=3 ; x=\frac{u}{v}, y=v$.

6 15.9.23 Evaluate the integral

$$
\iint_{R} \frac{x-2 y}{3 x-y} d A
$$

by making an appropriate change of variables, where R is the parallelogram enclosed by the lines $x-2 y=0, x-2 y=4,3 x-y=1$, and $3 x-y=8$.

