MA 213 Worksheet \#26

Sections 16.5
12/4/18

1 16.5.1,3 Find (1) the curl and (2) the divergence of the vector field.
(a) $\mathbf{F}(x, y, z)=x y^{2} z^{2} \mathbf{i}+x^{2} y z^{2} \mathbf{j}+x^{2} y^{2} z^{2} \mathbf{k}$
(b) $\mathbf{F}(x, y, z)=x y e^{z} \mathbf{i}+y z e^{x} \mathbf{k}$

2 16.5.13,15 Determine whether or not the vector field is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.
(a) $\mathbf{F}(x, y, z)=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}$
(b) $\mathbf{F}(x, y, z)=z \cos (y) \mathbf{i}+x z \sin (y) \mathbf{j}+x \cos (y) \mathbf{k}$

3 16.5.23 Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and \mathbf{F}, \mathbf{G} are vector fields, show $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G}$.

4 16.5.21 Show that any vector field of the form

$$
\mathbf{F}(x, y, z)=f(x) \mathbf{i}+g(y) \mathbf{j}+h(z) \mathbf{k}
$$

where f, g, h are differentiable functions, is irrotational.

5 16.5.21 Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=|\mathbf{r}|$. Verify each of the following identities.
(a) $\nabla \cdot \mathbf{r}=3$
(b) $\nabla \cdot(r \mathbf{r})=4 r$
(c) $\nabla r=\mathbf{r} / r$
(d) $\nabla \times \mathbf{r}=\mathbf{0}$
(e) $\nabla(1 / r)=-\mathbf{r} / r^{3}$

