MA 213 Worksheet \#3

Section 12.3
8/30/18

1 Find $\mathbf{a} \cdot \mathbf{b}$ for the following descriptions of \mathbf{a} and \mathbf{b}.
12.3.3 $\quad \mathbf{a}=\langle 1.5,0.4\rangle, \quad \mathbf{b}=\langle-4,6\rangle$
$12.3 .5 \quad \mathbf{a}=\left\langle 4,1, \frac{1}{4}\right\rangle, \quad \mathbf{b}=\langle 6,-3,-8\rangle$
12.3.7 $\quad \mathbf{a}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$
$12.3 .9 \quad|\mathbf{a}|=7$,
$|\mathbf{b}|=4$
the angle between \mathbf{a} and \mathbf{b} is $\pi / 6$

2 Find the angle between the vectors.
12.3.15 $\quad \mathbf{a}=\langle 4,3\rangle, \quad \mathbf{b}=\langle 2,-1\rangle$
$12.3 .19 \quad \mathbf{a}=4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}-\mathbf{k}$

3 12.3.25 Use vectors to decide whether the triangle with vertices $P(1,-3,-2), Q(2,0,-4)$, and $R(6,-2,-5)$ is right angled.

4 12.3.27 Find a unit vector that is orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+\mathbf{k}$.

5 12.3.30 Find the acute angle between the lines.

$$
x+2 y=7, \quad 5 x-y=2
$$

6 12.3.31 Find the acute angles between the curves at their points of intersection.

$$
y=x^{2}, \quad y=x^{3}
$$

7 12.3.41 Find the scalar and vector projections of b onto a.

$$
\mathbf{a}=\langle 4,7,-4\rangle, \quad \mathbf{b}=\langle 3,-1,1\rangle
$$

8 12.3.45 Show that the vector $\operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}.

