## MA 213 Worksheet \#5

Section 12.5
9/6/18

1 12.5.1 Determine whether each statement is true or false in 3D space. If true, explain why. If false, give a counterexample.
(a) Two planes parallel two a third plane are parallel.
(b) Two planes perpendicular to a third plane are parallel.
(c) Two lines parallel to a plane are parallel.
(d) Two lines perpendicular to a plane are parallel.
(e) Two planes perpendicular to a line are parallel.
(f) A plane and a line either intersect or are parallel.

2 12.5.3 Find a vector equation and the parametric equations of the line through the point $(2,2.4,3.5)$ and parallel to the vector $3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$.
3 12.5.31 Find an equation of the plane through points $(0,1,1),(1,0,1)$, and $(1,1,0)$.
4 Determine whether the lines $L_{1}$ and $L_{2}$ are parallel, skew, or intersecting. If they intersect, find the point of intersection.
(a) 12.5 .19

$$
\begin{gathered}
L_{1}: x=3+2 t, y=4-t, z=1+3 t \\
L_{2}: x=1+4 s, y=3-2 s, z=4+5 s
\end{gathered}
$$

(b) 12.5.21

$$
\begin{aligned}
& L_{1}: \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{-3} \\
& L_{2}: \frac{x-3}{1}=\frac{y+4}{3}=\frac{z-2}{-7}
\end{aligned}
$$

5 12.5.30 Find an equation of the plane that contains the line $\langle x, y, z\rangle=\langle 1+t, 2-t, 4-3 t\rangle$ and is parallel to the plane $5 x+2 y+z=1$.
6 12.5.49 Find direction numbers for the line of intersection of the planes $x+y+z=1$ and $x+z=0$.
7 12.5.61 Find an equation of the plane consisting of all the points that are equidistant from the points $(1,0,-2)$ and $(3,4,0)$.
8 Assume that three points $P, Q$, and $R$ are not collinear. Explain why the distance $d$ between $P$ and the line through $Q$ and $R$ is given by

$$
d=\frac{\|\overrightarrow{Q R} \times \overrightarrow{Q P}\|}{\|\overrightarrow{Q R}\|} .
$$

