MA 213 Worksheet \#9
 Sections 14.1 and 14.2
 9/25/18

1 14.1.9, 11
(a) Let $g(x, y)=\cos (x+2 y)$.
i. Evaluate $g(2,1)$.
ii. Find the domain of g.
iii. Find the range of g.
(b) Let $f(x, y, z)=\sqrt{x}+\sqrt{y}+\sqrt{z}+\ln \left(4-x^{2}-y^{2}-z^{2}\right)$
i. Evaluate $f(1,1,1)$.
ii. Find and describe the domain of f.

2 14.1.45, 49 For each of the following functions, draw a contour map showing several level curves (then compare with a sketch or computer generated graph of the function).
(a) $f(x, y)=x^{2}-y^{2}$
(b) $f(x, y)=y e^{x}$

3 14.1.55 A thin metal plate, located in the $x y$-plane, has temperature $T(x, y)$ at point (x, y). Sketch some level curves (isothermals) if the temperature function is given by

$$
T(x, y)=\frac{100}{1+x^{2}+2 y^{2}}
$$

4 14.2.1 Suppose $\lim _{(x, y) \rightarrow(3,1)} f(x, y)=6$. What can you say about the value of $f(3,1)$? What if we also know that f is continuous?

5 14.2.5,9,11,13,16 For each of the following, find the limit if it exists. Otherwise show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(3,2)}\left(x^{2} y^{3}-4 y^{2}\right)$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{2}(x)}{x^{4}+y^{4}}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{4}+y^{4}}$

6 14.2.31,35,37 Determine the set of points at which the function is continuous:
(a) $F(x, y)=\frac{1+x^{2}+y^{2}}{1-x^{2}-y^{2}}$
(b) $f(x, y, z)=\arcsin \left(x^{2}+y^{2}+z^{2}\right)$
(c) $f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 1 & (x, y)=(0,0)\end{cases}$

7 14.1.32 Match the function with its graph, giving reasons for your choices.
(a) $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$
(b) $f(x, y)=\frac{1}{1+x^{2} y^{2}}$
(c) $f(x, y)=\ln x^{2}+y^{2}$
(d) $f(x, y)=\cos \sqrt{x^{2}+y^{2}}$
(e) $f(x, y)=|x y|$
(f) $f(x, y)=\cos x y$

8 14.1.61-66 Match the function with both its graph and its countour map, giving reasons for your choices.
(a) $f(x, y)=\sin (x y)$
(b) $f(x, y)=e^{x} \cos (y)$
(c) $f(x, y)=\sin (x-y)$
(d) $f(x, y)=\sin (x)-\sin (y)$
(e) $f(x, y)=\left(1-x^{2}\right)\left(1-y^{2}\right)$
(f) $f(x, y)=\frac{x-y}{1+x^{2}+y^{2}}$

