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Reminders

• Exam II takes place Tonight, October 16, 5:00-7:00 PM
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Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration

14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient

14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers

15.1 Double Integrals
15.2 Double Integrals over General Regions

Exam II Review
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Learning Goals

• Find out how to ace Exam II

Acknowledgement:

Most of the sample problems in this lecture were taken from Paul’s Online Notes at
Lamar University. You can find solutions to these problems in the Calculus III notes
there.
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Overview

• Arc length, velocity, acceleration

• Partial derivatives, chain rule

• Linear Approximation

• Directional derivatives, gradient

• Second derivative test for local extrema

• Closed interval method for global maxima and minima on a closed, bounded set

• Lagrange Multiplier Method

• Double integrals and Iterated Integrals (Section 15.1 only)
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Arc Length, Velocity, Acceleration

If r(t) is a vector function:

• r′(t) is the tangent vector to the space curve at the point r(t)

• r′′(t) is the acceleration of the particle at time t

• |r′(t)| is the speed of a particle moving along the space curve at
time t

The arc length of a space curve r(t), a ≤ t ≤ b is

L =
∫ b

a

∣∣r′(t)∣∣ dt.

Peter A. Perry University of Kentucky

Math 213 - Exam II Review



r′ (t), r′′ (t) Chain Linear Gradient Max/Min/Lagrange Iterate

By Popular Demand

A ball is thrown at 60◦ with a velocity of 20m/sec to clear a wall 2m high. How far
away is the wall?

x

y
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The Chain Rule

1 Find dz/dt if z = 4x2 + 3y2, x(t) = sin(t), y(t) = cos(t).

2 Suppose that z = f (x, y) = 3x2 − 2xy + y2, x = 3u + 2v, y = 4u− v. Find ∂z/∂u
and ∂z/∂v.

3 The equation x2 + y3 + xyz = 1 defines z implicitly as a function of x and y. Find
∂z/∂y in terms of x, y, and z.
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Tangent Planes, Linear Approximation

Find the tangent plane to the graph of f (x, y) = x2 + 4y2 at the point (2, 1, 8).

Using the linear approximation, estimate f (0.1, 1.9) if f (x, y) =
√

8− x2 − y2.
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The Gradient

How to Compute It

If f is a function of two variables, ∇ f (x, y) =
〈

∂ f
∂x

,
∂ f
∂y

〉

If f ia function of three variables, ∇ f (x, y, z) =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

〉

What it Means

The magnitude of ∇ f (a, b) (or ∇ f (a, b, c)) is the maximum rate of change of f at (a, b)
(or (a, b, c))

The direction of∇ f (a, b) (or∇ f (a, b, c)) is the direction of the maximum rate of change
of f at (a, b) (or (a, b, c))
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The Gradient

What it Does

The directional derivative of f (x, y) at (a, b) in the direction u (where u is a unit vector is

Du f (a, b) = ∇ f (a, b) · u.

The gradient of a function of two variables is perpendicular to level curves of f

The gradient of a function of three variables is perpendicular to level surfaces of f

1 Find the maximum rate of change of f (x, y) = 3x2 + 4y2 at (1, 2), and find the
direction u of that maximum rate of change

2 Find the directional derivative of f (x, y) = exy at the point (1, 2) in the direction

u =

〈
1√
2

,
1√
2

〉
3 Find the equation of the tangent plane to the level surface of x2 + 4y2 + 9z2 = 17

at the point (2, 1, 1).
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Second Derivative Test

• Local extrema occur at critical points, i.e., points (a, b) where
fx(a, b) = fy(a, b) = 0

• A critical point corresponds to a local maximum or minimum if

D = fxx(a, b) fyy(a, b)− fxy(a, b)2

is positive

• A critical point with D > 0 is a local minimum if fxx(a, b) > 0, and a local
maximum if fxx(a, b) < 0

1 Find the local maxima and minima for the function
f (x, y) = 3x2y + y3 − 3x2 − 3y2 + 2

2 Find the point on the plane 4x− 2y + z = 1 closest to the point (−2,−1, 5)
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Closed Set Method

To find the maximum and minimum of a function f on a bounded closed set D:

1 Find all local maxima and minima of f in D using the second derivative test

2 Find the maximum and minimum of f on the boundary of D using the Closed
Interval Method from Calculus I

Find the absolute maximum and minimum of f (x, y) = 2x2 − y2 + 6y in the region D
with x2 + y2 ≤ 16.
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Lagrange Multipliers

A constrained optimization problem consists of:
• An objective function f to be maximized or minimized

• One or more constraint equations which must also be satisfied

For a constrained optimization problem with one constraint, two variables, solve:

∇ f = λ∇g (two equations)

g(x, y) = c (one equation)

For two constraints, three variables, solve:

∇ f = λ∇g1 + µ∇g2 (three equations)

g1(x, y, z) = c1 (one equation)

g2(x, y, z) = c2 (one equation)
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Lagrange Multipliers

1 Find the maximum and minimum of the function f (x, y) = 5x− 3y on the circle
x2 + y2 = 136

2 Find the maximum of f (x, y, z) = 4y− 2z subject to the constraints
2x− y− z = 2 and x2 + y2 = 1
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Double Integrals
The double integral of a function f over a rectangle R = [a, b]× [c, d] is denoted∫∫

R
f (x, y) dA.

To compute it, we can compute the iterated integral∫ b

a

(∫ d

c
f (x, y) dy

)
dx

or the iterated integral ∫ d

c

(∫ b

a
f (x, y) dx

)
dy.

1 Find
∫∫

R 6xy2 dA if R = [2, 4]× [1, 2]

2 Find
∫∫

R xexy dA if R = [−1, 2]× [0, 1]
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