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Reminders

Access your WebWork account only through Canvas!

Homework A3 on section 12.5 is due Wednesday

Homework A4 on section 12.6 is due Friday

Quiz # 2 on sections 12.3-12.4 takes place in Thursday recitation
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Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems

12.2 Lecture 2: Vectors in the Plane and in Space

12.3 Lecture 3:The Dot Product

12.4 Lecture 4:The Cross Product

12.5 Lecture 5: Equations of Lines and Planes, I

12.5 Lecture 6: Equations of Lines and Planes, II

12.6 Lecture 7: Surfaces in Space

13.1 Lecture 8: Vector Functions and Space Curves

13.2 Lecture 9 Derivatives and Integrals of Vector Functions
Lecture 10: Exam I Review
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Learning Goals

Review dot, cross, and triple scalar products
e Review equations of lines and planes

Sketch and visualize lines and planes

Learn how find the distance from a point to a plane
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Dot Product, Cross Product, Triple Product

Formula Type Geometry Zero if. ..
Dot a-b Scalar  Projections a, b orthogonal
Cross axb Vector  Areaofa a, b parallel
Parallelogram
Triple a-(bxc) Scalar Volume ofa a, b, c coplanar
Parallelepiped
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Lines and Planes

To specify the equation of a line L, you
need:

To specify the equation of a plane, you
need:
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Lines and Planes

To specify the equation of a line L, you
need:

® A point (xq,Y0,20) on L

® A vector (a,b,c) in the direction
of L

To specify the equation of a plane, you
need:

® A point (x9, Yo, 20) on the plane
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Lines and Planes

.
/

S 11 b,c) To specify the equation of a line L, you
(XOIVO/ZO) need:

® A point (xq,Y0,20) on L

® A vector (a,b,c) in the direction
of L

To specify the equation of a plane, you
need:

® A point (x9, Yo, 20) on the plane

S, (a,b,c) ® Avectorn = (g,b,c) normal to

/ N ’ the plane
(0, y0, 20

)
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Hot Tip - Planes Made Simple

The equation of a plane is

a(x = x0) +b(y —yo) +¢(z—20) =0

ax+by+cz=d

N Step 1. Determine (4, b, ¢) from geometry
~ 4 {a,b,c)

4::?0{20)

Step 2. Find d by substituting in x, yo, zo

Example: Find the equation of a plane par-
x allel to the plane

xX—y+2z=0
through the point (2,2,2).
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Hot Tip - Planes Made Simple

The equation of a plane is
a(x —xp) +b(y —yo) +c(z—2) =0

or
ax+by+cz=d

Step 1. Determine (4, b, ¢) from geometry

Step 2. Find d by substituting in x, yo, zo

Example: Find the equation of a plane or-
thogonal to the line

(x,y,2) = (-7,0,0) + t(—7,3,3)

which passes through the point (0,0, —7).
Give your answer in the form ax + by +
cz =dwherea =7.
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N S S SRS
Hot Tip - Sketching Planes Made Simple

The equation of a plane is

ax+by+cz=d
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N S S SRS
Hot Tip - Sketching Planes Made Simple

The equation of a plane is
ax+by+cz=d
To sketch the plane with this equation, you

can find the x-, y-, and z-intercepts from the
equation:

x=d/a, y=d/b, z=d/c

(d/a,0,0)
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N S S SRS
Hot Tip - Sketching Planes Made Simple

The equation of a plane is
ax+by+cz=d
To sketch the plane with this equation, you

can find the x-, y-, and z-intercepts from the
equation:

x=d/a, y=d/b, z=d/c

Sketch the part of the plane
(d/a,0,0)
x 2x+y+3z=4

in the first octant and label the x- , y-, and
z-intercepts.
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Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines Ly
and L, can be
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Intersecting, Parallel, and Skew Lines

y

In two-dimensional space, two lines Ly
and L, can be

® parallel, or

Peter A. Perry University of Kentucky




Intersecting, Parallel, and Skew Lines

Y

In two-dimensional space, two lines Ly
and L, can be
® parallel, or

® intersecting

Peter A. Perry University of Kentucky




Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines Ly
and L, can be

® parallel, or

® intersecting

2 In three dimensions, two lines L; and
L, can be

Peter A. Perry University of Kentucky




Intersecting, Parallel, and Skew Lines
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Intersecting, Parallel, and Skew Lines
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In two-dimensional space, two lines Ly
and L, can be
® parallel, or

® intersecting

In three dimensions, two lines L; and
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Intersecting, Parallel, and Skew Lines
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Intersecting, Parallel, and Skew Lines

In two-dimensional space, two lines Ly
and L, can be

® parallel, or

® intersecting

In three dimensions, two lines L; and
L, can be

® parallel,
® skew, or

® intersecting

How do you tell which is which?
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Intersecting, Parallel, and Skew Lines

r(t) = ro(t) + tv

® Two lines are parallel if the corresponding vectors v are parallel
® If not parallel, two lines intersect if we can solve for the point of intersection

® If not parallel, and nonintersecting, they are skew

Determine whether the following pairs of lines are parallel, intersect, or are skew. If
they intersect, find the points of intersection.

@ Li:x=2+4s, y=3-25, z=1-3s
Ly:x=3+t y=-4+3t z=2-7t

_E_y—l_z—l x—=2 y-3 z
@Ll.lf—_lf_S, L : =
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Intersecting and Parallel Planes

Two planes either
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Intersecting and Parallel Planes

z

Two planes either

® are parallel (if their normal
vectors are parallel), or
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Intersecting and Parallel Planes

z

Two planes either

® are parallel (if their normal
vectors are parallel), or

y ® intersect in a line
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Intersecting and Parallel Planes

z

Two planes either

® are parallel (if their normal
vectors are parallel), or

y ® intersect in a line

A vector pointing along that line will be
perpendicular to both normal vectors

X
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Intersecting and Parallel Planes

Two planes either

® are parallel (if their normal
vectors are parallel), or

® intersect in a line

A vector pointing along that line will be

perpendicular to both normal vectors
pY

z
‘ y
z Find the line of intersection between
the planes
x+2y+3z=1
\ { and
- x—y+z=1
Y

X
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The Distance from a Point to a Plane

To find the distance D
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The Distance from a Point to a Plane

To find the distance D from a point P

0P1

Peter A. Perry University of Kentucky




The Distance from a Point to a Plane

To find the distance D from a point P; to
a plane with normal vector n contain-
ing a point Py:
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The Distance from a Point to a Plane

Peter A. Perry

To find the distance D from a point P; to
a plane with normal vector n contain-
ing a point Py:

Let b be the vector PO—PI

Then the distance D is given by
comp, b, or

D— [n-b]
[n]
If
Py = Pi(x1,Y1,21),
Py = Py(x0,Y0,20),
then

b = (x1 — X0, Y1 — Yo, 21 — Z0)
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The Distance from a Point to a Plane

b = (x1 — Xo,¥1 — Yo, 21 — Z0)
n=(ab,c)
If the plane’s equation is
ax+by+cz+d=0
then

n-b=a(x; —xp)+b(y1 —yo) +c(z1 — 20)
=ax; +by; +cz1 +4d
SO
_ |ax1 + by1 + ¢z + 4|

D
Va2 412+ ¢?
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Summary

® We reviewed the basic facts about the dot product a - b, the cross product a x b,
and the scalar triple product a - (b X c)

® We reviewed how to write equations of lines and planes and ...

e How to determine whether two lines are parallel, perpendicular, or
skew

e How to determine whether planes are parallel or intersecting

® We computed the distance from a point to a plane
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Homework

o Re-read section 12.5 and continue work on webwork A3 (due
Wednesday)

e Read and study section 12.6 on quadric surfaces

e Prepare for tomorrow’s recitation on section 12.5
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