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Reminders

e Access your WebWork account only through Canvas!

e Homework A4 on section 12.6 is due tonight

e The Review Session for Exam 1 will take place on Monday,
September 16 from 6 PM to 8 PM in KAS 213

e On Wednesday September 18 we will have an in-class review for
Exam I

e Exam 1 takes place next Wednesday, September 18. Section 17
will meet in CB 118, and sections 18 and 19 will meet in CB 122.
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Unit I: Geometry and Motion in Space

12.1 Lecture 1: Three-Dimensional Coordinate Systems

12.2 Lecture 2: Vectors in the Plane and in Space

12.3 Lecture 3:The Dot Product

12.4 Lecture 4:The Cross Product

12.5 Lecture 5: Equations of Lines and Planes, I

12.5 Lecture 6: Equations of Lines and Planes, II

12.6 Lecture 7: Surfaces in Space

13.1 Lecture 8: Vector Functions and Space Curves

13.2 Lecture 9 Derivatives and Integrals of Vector Functions
Lecture 10: Exam I Review
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Learning Goals

e Understand what a vector-valued function is

¢ Understand limits and continuity for vector-valued functions

e Learn to visualize space curves:
(i) by computing their projections onto the xy, xz, and yz planes,
(ii) by viewing them as intersections of surfaces
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Vector-Valued Functions

A vector-valued function is a function r(t) whose domain is a set of real
numbers and whose range is a set of vectors in two- or three-dimensional
space. We can specify r(t) through its component functions:

r(t) = (f (), g(t), h(t)) = f(O)i+g(t)] + h(D)k

Example you already know: If rg = (xo,y0,20) and v = (a, b, c), then
r(t) =rg+tv
is a vector-valued function with component functions

ft)=xo+at, g(t)=yo+bt, h(t)=zo+ct
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Vector Function Basics

t
@ What is the domain of the function r(t) = <ln(t +1), ﬁ,2t>?

2 .
® What s lim;_,; (i_lti+\/t+8j+ Sl;:\’:tk)?

@ Can you match these curves with their graphs?
(a) r(t) = (tsint,tcost,t)
(b) x =cost,y =sint,z = cos2t
(¢) x =cost,y =tz =sint

z z z
L I ks il x it
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Breaking it Down: Limits and Continuity

The limit of a vector-valued function is the limit of the component func-
tions:

fm (3(0), (0, 2(0)) =  fim (1), Jim (), Jim 2(1) )

t—ty t—ty

A vector-valued function r(t) = (x(t),y(t),z(t)) is continuous at t = a if
each of the component functions x(t), y(t), z(t) is continuous at t = a

In short, r(#) is continuous at a if lim;_,, r(¢) = r(a)
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Space Curves

fr(t) = (f(t),g(t),h(t)) is a vector function defined on an interval I, the set of all
pomts (x(t), y(t) z(t) for t in the interval I is called a space curve C. The equations
= f(t),y = g(t),z = h(t) are called the parametric equations for C.

Match each of the space curves shown with their parametric equations.

r(t) = (sint,t)  r(t) = (¥ -1,1)
r(t) = (%, 13,%)  r(t) = (cost, — cost,sint)

L.
’\

Peter A. Perry University of Kentucky




[e] le]ele]ele]e)

Line Segments are Space Curves

@ Find the vector equation and parametric equations for the line segment from
P(2,0,0) to Q(6,2,-2)

@ Find the vector equation and parametric equations for the line segment from
P(a,b,c) to Q(u,v, w)
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[e]e] lele]ele]e)

Visualizing It: Projections

2 Consider the space curve with parametric equa-
tions

x(t) =cost, y(t) =t z(t)=sint
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Visualizing It: Projections

Consider the space curve with parametric equa-
tions

x(t) =cost, y(t) =t z(t)=sint

@ Find the projection of this curve onto the
xz plane (the side wall)

Peter A. Perry University of Kentucky



[e]e] lele]ele]e)

Visualizing It: Projections

Consider the space curve with parametric equa-
tions

x(t) =cost, y(t) =t z(t)=sint

@ Find the projection of this curve onto the
xz plane (the side wall)

@ Find the projection of this curve onto the
xy plane (the floor)

Peter A. Perry University of Kentucky



[e]e] lele]ele]e)

Visualizing It: Projections

Consider the space curve with parametric equa-
tions

x(t) =cost, y(t) =t z(t)=sint

@ Find the projection of this curve onto the
xz plane (the side wall)

@ Find the projection of this curve onto the
xy plane (the floor)

©® Find the projection of this curve onto the
proj
yz plane (the back wall)

Peter A. Perry University of Kentucky



[e]e] lele]ele]e)

Visualizing It: Projections

Consider the space curve with parametric equa-
tions

x(t) =cost, y(t) =t z(t)=sint

@ Find the projection of this curve onto the
xz plane (the side wall)

@ Find the projection of this curve onto the
xy plane (the floor)

©® Find the projection of this curve onto the
proj
yz plane (the back wall)

Peter A. Perry University of Kentucky



[e]e]e] le]elele)

Visualizing It: Surfaces

Let’s take another look at the curve

x(t) =cost, y(t)=t z(t)=sint
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[e]e]e] le]elele)

Visualizing It: Surfaces

N

Let’s take another look at the curve

x(t) =cost, y(t)=t z(t)=sint

@ Show that this curve lies on the cylinder
24z =1
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[e]e]e] le]elele)

Visualizing It: Surfaces

z

Let’s take another look at the curve
x(t) =cost, y(t)=t z(t)=sint
@ Show that this curve lies on the cylinder
x2+22=1

y @ Sketch the curve and the surface on the
same set of axes
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Visualizing It: Surfaces

z

Let’s take another look at the curve
x(t) =cost, y(t)=t z(t)=sint
@ Show that this curve lies on the cylinder
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[e]e]e]e] Jelele)

Visualizing It: Surfaces

Let’s revisit the curve

x(t) =tcost, y(t) =tsint, z(t)=t

@ Show that this curve lies on the right
circular cone z2 = x? + y?

@ Sketch the curve and the surface on the
same set of axes.
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[e]e]e]ele] lele)

Visualize It: Space Curves and Surfaces

Show that the curve with parametric equations
x =sint, y=cost, z= sin? ¢

is the curve of intersection of the surfaces z = x? and x> + % = 1.
z

® The surface z = x? is a cylinder with

curve z = x? parallel to the y-axis

e The surface x*> + 1% = 1is a cylinder
of radius 1 parallel to the the z-axis

® Their intersection is the parametric
curve above
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Intersections

@ Find the points where the helix
r(t) = (sin(t), cos(t), t)
intersects the sphere

P4y +22=5
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Intersections

z @ Find the points where the helix
r(t) = (sin(t), cos(t),t)
intersects the sphere

Pty +=5

\ @ Find the curve that describes the

y intersection of the parabolic cylinder
' y = x? and the top half of the

\ ellipsoid

' X2+ 4y? + 422 =16
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[e]e]e]ele]ele] )

Intersections

Two particles travel along the space curves
v (8) = (L 13,83), ra(t) = (14+2t,1+6t,1+14t)

Do the particles collide? Do their paths intersect?

Recall:

Two particles collide if 11 (t) = 12(t) for the same t.

Two particles intersect if 11 (s) = rp(t) for (possibly different) times s and ¢.
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Summary

We learned what a vector-valued function

® We learned how to compute limits of space curves

We learned what it means for a space curve to be continuous

We learned how to visualize space curves as described by vector-valued
functions




Homework

e Begin reviewing for Exam I

e Re-read section 13.1

Read section 13.2 for Monday

Begin work on Webwork A5 which is due no later than next Wednesday
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