Surface
Ellipsoid
Elliptic Paraboloid
Hyperbolic Paraboloid y

Surface

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
All traces are ellipses.
If $a = b = c$, the ellipsoid is

a sphere.

Equation

Surface

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Horizontal traces are ellipses.

Vertical traces in the planes
$$x = k \text{ and } y = k \text{ are}$$
hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.

Equation

 $\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$

hyperbolas.

illustrated.

Horizontal traces are

Vertical traces are parabolas.

The case where c < 0 is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
Horizontal traces are ellipses.
Vertical traces are hyperbolas.
The axis of symmetry corresponds to the variable whose coefficient is negative.

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$.

Vertical traces are hyperbolas.

The two minus signs indicate two sheets.