First-Day Info O	Unit A O	Points in 2D o	Points in 3D 0000	Spheres, Lines, Planes 0000000	Reminders	0

Math 213 - Points in Space

Peter Perry

August 21, 2023

First-Day Information

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Please read through the online syllabus! The online calendar tells all.

- Online Text
- Webwork (Always Log in from Canvas!)
- 10 Quizzes
- Three Midterm Exams
- One Final Exam
- Class Participation

My Office Hours: MWF 2:00-3:00, 755 POT

My E-Mail: pperr0@uky.edu

In an urgent situation: (859) 361-7725

Unit A: Vectors, Curves, and Surfaces

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- August 21 Points
- August 23 Vectors
- August 25 Dot Product
- August 28 Cross Product
- August 30 Equations of Planes
- September 1 Equations of Lines
- September 6 Curves
- September 8 Integrating Along Curves
- September 11 Integrating Along Curves
- September 13 Sketching Surfaces
- September 15 Cylinders and Quadric Surfaces

イロト 不得 トイヨト イヨト ニヨー

Points in the *xy* plane are described by two coordinates

The distance between two points is given by the Pythagorean Theorem:

$$c^2 = a^2 + b^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The distance between two points is given by the Pythagorean Theorem:

$$c^2 = a^2 + b^2$$

ヘロト 人間 とくほとくほとう

æ

The distance between two points is given by the Pythagorean Theorem:

$$c^2 = a^2 + b^2$$

where

 $a = x_2 - x_1$

ヘロト 人間 とくほとく ほとう

€ 990

The distance between two points is given by the Pythagorean Theorem:

$$c^2 = a^2 + b^2$$

where

 $a = x_2 - x_1$

 $b = y_2 - y_1$

The distance between two points is given by the Pythagorean Theorem:

$$c^2 = a^2 + b^2$$

where

 $a = x_2 - x_1$

 $b = y_2 - y_1$

$$c^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Points in Space

Points in space have (x, y, z) coordinates

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

ヘロト 人間 とくほとくほとう

æ

イロト 不得 とうほう イヨン

æ

The point

$$P = (1, 2, 3)$$

is located as follows:

Locate the point (1, 2) in the *xy* plane

ヘロト 人間 とくほとくほとう

æ

2 Move up 3 units in the *z* direction

The *xy* plane is the plane with z = 0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The *xz* plane is the plane with y = 0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The *yz* plane is the plane with x = 0

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Distances in Space

How do we find the distance from P_1 to P_2 ?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Distances in Space

How do we find the distance from P_1 to P_2 ?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

How do we find the distance from P_1 to P_2 ?

$$c^2 = a^2 + b^2$$

How do we find the distance from P_1 to P_2 ?

$$c^2 = a^2 + b^2$$

$$a^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

How do we find the distance from P_1 to P_2 ?

$$c^2 = a^2 + b^2$$

$$a^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

 $b^{2} = (z_{2} - z_{1})^{2}$

ヘロト 人間 とくほとく ほとう

€ 990

$$c^{2} = a^{2} + b^{2}$$

$$a^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$b^{2} = (z_{2} - z_{1})^{2}$$

$$c^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$+ (z_{2} - z_{1})^{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Find the set of points (x, y, z) that obey the equation

$$x^2 + y^2 + z^2 = 25$$

Find the set of points (x, y, z) that obey the equation

$$x^2 + y^2 + z^2 - 4x - 4y = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Find the set of points that satisfy the equation x = y

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Find the equation of a sphere if one of its diameters has endpoints (1, 0, 1) and (3, 4, 3).

Puzzler #6

Describe the set of points $(x, y, z) \in \mathbb{R}^3$ that obey the *inequality*

 $x^2 + y^2 + z^2 < 2x - 2y + 8$

Extra-Credit Puzzler

Find the set of points that satisfy both of the equations

$$x^2 + y^2 + z^2 = 6$$
$$x^2 + y^2 = 2$$

Reminders for the Week of August 21-25

- Tuesday 8/22 Recitation on CLP 3 1.1-Points
- Wednesday 8/23 Read CLP3 1.2 on Vectors before class
- Thursday 8/24 Recitation on CLP3 1.2-Vectors
- Friday 8/25 Read CLP3 1.2 on Dot Products before class

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• Friday 8/25 - Webwork A1 due at 11:59 PM