Math 213 - Cylinders and Quadric Surfaces

Peter Perry

September 17, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13 - Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Introducing the Orangutan

The name "orangutan" is derived from the Malay words orang, meaning "person", and hutan, meaning "forest"

Source: Wikipedia Image: PAP

Cylinders

A cylinder is a surface consisting of all lines

- parallel to a given line
- pass through a given fixed curve Here are some examples. What are the given line and the given curve?

Example 1:

$$
x^{2}+y^{2}=1
$$

Cylinders

A cylinder is a surface consisting of all lines

- parallel to a given line
- pass through a given fixed curve Here are some examples. What are the given line and the given curve?

Example 2:

$$
x^{2}+(y-z)^{2}=1
$$

Cylinders

A cylinder is a surface consisting of all lines

- parallel to a given line
- pass through a given fixed curve Here are some examples. What are the given line and the given curve?

Example 3:

$$
z=(x-1)^{2}
$$

Quadric Surfaces

A quadric surface is the set of all points satisfying an equation of the form

$$
A x^{2}+B y^{2}+C z^{2}+D x+E y+F z=G
$$

for some constants A, B, C, D, E, F, and G.
By completing the square we can reduce the equation above to

$$
A(x-a)^{2}+B(y-b)^{2}+C(z-c)^{2}=H
$$

for new constants a, b, c, and H.
By moving the point (a, b, c) to the origin $(0,0,0)$ we get the equation

$$
A x^{2}+B y^{2}+C z^{2}=L
$$

for a new constant L.
You get very different surfaces depending on the signs of A, B, C, and L.

Time Out: Conic Sections

Remember these conic sections:

Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Time Out: Conic Sections

Hyperbola $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

Parabola $y^{2}=4 p x$

A Gallery of Quadric Surfaces: Part I

Example 1: $x^{2}+y^{2}+z^{2}=r^{2}$

A Gallery of Quadric Surfaces: Part I

Example 1: $x^{2}+y^{2}+z^{2}=r^{2}$
Traces in $z=h$:

$$
x^{2}+y^{2}+h^{2}=r^{2}
$$

or

$$
x^{2}+y^{2}=r^{2}-h^{2}
$$

The traces are circles of radius $\sqrt{r^{2}-h^{2}}$
Note that there is no trace if $|h|>r$!

A Gallery of Quadric Surfaces: Part I

Example 1: $x^{2}+y^{2}+z^{2}=r^{2}$

This quadric surface is a sphere of radius r with center $(0,0,0)$

A Gallery of Quadric Surfaces: Part II

A Gallery of Quadric Surfaces: Part II

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1
$$

Traces in planes $z=h$:

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1-h^{2}
$$

Are there any values of h for which there is no trace?

A Gallery of Quadric Surfaces: Part II

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1
$$

Traces in planes $y=h$:

$$
\frac{x^{2}}{4}+z^{2}=1-\frac{h^{2}}{9}
$$

Are there any values of h for which there is no trace?

A Gallery of Quadric Surfaces: Part II

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1
$$

This quadric surface is an ellipsoid

A Gallery of Quadric Surfaces: Part III

$$
z^{2}=x^{2}+y^{2}
$$

A Gallery of Quadric Surfaces: Part III

$$
z^{2}=x^{2}+y^{2}
$$

What are the traces in planes
$z=h$?
What are the traces in the $x z$ and $y z$ planes?

A Gallery of Quadric Surfaces: Part III

$$
z^{2}=x^{2}+y^{2}
$$

What are the traces in planes
$z=h$?
What are the traces in the $x z$ and $y z$ planes?

Planes $z=h$:

$$
x^{2}+y^{2}=h^{2}
$$

$x z$ plane: $z^{2}=x^{2}$
$y z$ plane: $z^{2}=y^{2}$

A Gallery of Quadric Surfaces: Part III

$$
z^{2}=x^{2}+y^{2}
$$

surface is a cone

A Gallery of Quadric Surfaces: Part IV

$$
4 x^{2}+y^{2}-z^{2}=1
$$

What are its traces in the planes
$z=h$?

A Gallery of Quadric Surfaces: Part IV

$$
4 x^{2}+y^{2}-z^{2}=1
$$

What are its traces in the planes
$z=h$?

$$
4 x^{2}+y^{2}=1+h^{2}
$$

Are there any values of h for which there is no trace?

A Gallery of Quadric Surfaces: Part IV

$$
4 x^{2}+y^{2}-z^{2}=1
$$

This surface is a hyperboloid of one sheet

A Gallery of Quadric Surfaces: Part V

$$
x^{2}+y^{2}-z^{2}=-1
$$

What are its traces in planes parallel to the $x y$ plane?

A Gallery of Quadric Surfaces: Part V

$$
x^{2}+y^{2}-z^{2}=-1
$$

What are its traces in planes parallel to the $x y$ plane?

$$
x^{2}+y^{2}=h^{2}-1
$$

Are there any values of h for which there is no trace?

A Gallery of Quadric Surfaces: Part V

$$
x^{2}+y^{2}-z^{2}=-1
$$

This quadric surface is a hyperboloid of two sheets

Mystery Surface

$$
z=x^{2}-y^{2}
$$

Shown are traces in planes $z=h$ for $h>0$ (red) and $h<0$ (blue).

What is this surface?

Reminders for the Week of September 11-15

- Alternate exam requests are due by 5 PM tonight
- Homework A6 is due Monday 11:59 PM!
- Your first exam is on Wednesday September 20 at 5:00 PM
- Section 11 takes the exam in CP 139
- Sections 12-14 takes the exam in CP 153

