Math 213 - Functions of Several Variables

Peter Perry

September 18, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

Functions of Several Variables

We'll begin to study functions such as

$$
\begin{aligned}
& f(x, y)=\sqrt{1-x^{2}-y^{2}} \\
& g(x, y)=e^{-\left(x^{2}+y^{2}\right)} \\
& h(x, y)=e^{-\left(x^{2}+y^{2}\right)} \cos \left(\sqrt{x^{2}+y^{2}}\right)
\end{aligned}
$$

and address some basic questions:

- What are the domain and range of a function of several variables?
- How do you graph a function of several variables?
- What is the limit of a function of several variables at a point
- When is a function of several variables continuous?

Some Useful Notation

$\mathbb{R}^{n} \quad$ Real n-dimensional space, where n is a natural number, i.e., the set of points $\left(x_{1}, \ldots, x_{n}\right)$ where x_{i} is a real number
$\in \quad$ "is an element of"
$\notin \quad$ "is not an element of"
$f: S \rightarrow T$ "The function f has domain S and range T "
$[a, b] \quad$ The interval $a \leq x \leq b$
 [a, b) The interval $a \leq x<b$

$(a, b]$ The interval $a<x \leq b$

$(a, b) \quad$ The interval $a<x<b$

Domain and Range

Find the domain of the function

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}
$$

What is its range?
What is its graph?

Domain and Range

Find the domain of the function

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}
$$

What is its range?
What is its graph?
$f: S \rightarrow T$ where:

Domain:

$$
S=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

Range:

$$
T=[0,1]
$$

Domain and Range

Find the domain of the function

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}
$$

What is its range?
What is its graph?

Domain and Range

Find the domain of the function

$$
g(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

What is its range?
What is its graph?

Domain: \mathbb{R}^{2}

Range: $(0,1]$

Domain and Range

Find the domain and graph of the function
$h(x, y)=e^{-\left(x^{2}+y^{2}\right)} \cos \left(\sqrt{x^{2}+y^{2}}\right)$
Domain: \mathbb{R}^{2} (i.e., all of the $x y$-plane

Domain and Range

Domain and Range

Find the domain and graph of the function
$h(x, y)=e^{-\left(x^{2}+y^{2}\right)} \cos \left(\sqrt{x^{2}+y^{2}}\right)$
Domain: \mathbb{R}^{2} (i.e., all of the $x y$-plane

Domain and Range

Match these functions with their domains:

$$
\begin{array}{lll}
\ln (x+y) & \frac{x^{2}}{(x-1)^{2}+y^{2}} & \sqrt{x}+\sqrt{y}
\end{array}
$$

Domain of $\sqrt{x}+\sqrt{y}$

Domain of $\frac{x^{2}}{(x-1)^{2}+y^{2}}$

Domain of $\ln (x+y)$

Limits

Suppose $S \subset \mathbb{R}^{m}$ and $f: S \rightarrow \mathbb{R}$.
If \mathbf{a} is a point in \mathbb{R}^{m} and $f(\mathbf{x})$ is defined near $\mathbf{x}=\mathbf{a}$, we say that

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L
$$

if we can make $f(\mathbf{x})$ arbitrarily close to L by choosing \mathbf{x} close enough to a Examples:

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} e^{-\left(x^{2}+y^{2}\right)}=1 \\
\lim _{(x, y) \rightarrow(\pi, \pi / 2)} \cos (x) \sin (y)=-1 \\
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}=1
\end{gathered}
$$

Limits

However, functions of two variables don't always have limits!

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist?
Let's set

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

What is $f(r \cos \theta, r \sin \theta)$?
$\cos ^{2} \theta-\sin ^{2} \theta$
What happens as $r \downarrow 0$ if $\theta=0$? 1
What about if $\theta=\pi / 4$?

Limit Laws

If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$ and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(\mathbf{x})=M$:

$$
\begin{aligned}
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})+g(\mathbf{x}) & =L+M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})-g(\mathbf{x}) & =L-M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x}) \cdot g(\mathbf{x}) & =L M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x}) / g(\mathbf{x}) & =L / M \quad \text { if } M \neq 0
\end{aligned}
$$

Compositions
If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(\mathbf{x})=\mathbf{b}$ and $\lim _{\mathbf{x} \rightarrow \mathbf{b}} f(\mathbf{x})=L$, then

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(g(\mathbf{x}))=L
$$

If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(\mathbf{x})=c$ and $\lim _{t \rightarrow c} f(t)=L$, then

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(g(\mathbf{x})=L
$$

Continuity

Suppose that $S \subset \mathbb{R}^{m}$ and $f: S \rightarrow \mathbb{R}$. We say that f is continuous at $\mathbf{x}=\mathbf{a}$ if

- a lies in the domain of f
- $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})$ exists
- $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})$

If A is a set, we say that f is continuous on A if f is continuous at every a $\in A$

- Polynomial and rational functions are continuous on their domains
- Roots and power functions are continuous on their domains
- Trig and inverse trig functions are continuous on their domains
- Exponential and logarithm functions are continuous on their domains
- Compositions of continuous functions are continuous

Reminders for the Week of September 18-22

- Exam Review Wednesday 9/22 in Class
- Exam 1 at 5:00 PM Wednesday 9/20
- No recitation on Thursday 9/21
- Exam scores should be posted by 5 PM on Thursday 9/21
- Unit B continues on Friday 9/22
- Your exams will be returned to you in Recitation on 9/26

