Unit B Overview	Functions of Several Variables	Domain and Range	Limits	Continuity	Reminders
0	00	0000	00	0 0	0

Math 213 - Functions of Several Variables

Peter Perry

September 18, 2023

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 Functions of Several Variables
- September 22 Partial Derivatives
- September 25 Higher-Order Derivatives
- September 27 The Chain Rule
- September 29 Tangent Planes and Normal Lines
- October 2 Linear Approximation and Error
- October 4 Directional Derivatives and the Gradient
- October 6 Maximum and Minimum Values, I
- October 9 Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 Double Integrals in Polar Coordinates

Functions of Several Variables

We'll begin to study functions such as

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$

$$g(x,y) = e^{-(x^2 + y^2)}$$

$$h(x,y) = e^{-(x^2 + y^2)} \cos\left(\sqrt{x^2 + y^2}\right)$$

and address some basic questions:

- What are the domain and range of a function of several variables?
- How do you graph a function of several variables?
- What is the limit of a function of several variables at a point
- When is a function of several variables continuous?

Some Useful Notation

- \mathbb{N} The natural numbers 1, 2, 3, ...
- \mathbb{R}^n Real *n*-dimensional space, where *n* is a natural number, i.e., the set of points (x_1, \ldots, x_n) where x_i is a real number

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- \in "is an element of"
- ∉ "is not an element of"

 $f: S \rightarrow T$ "The function *f* has domain *S* and range *T*"

- [a, b] The interval $a \le x \le b$ a b
- [a, b) The interval $a \le x < b$ a b
- (a, b] The interval $a < x \le b$ a b
- (a, b) The interval a < x < b a b

Unit B OverviewFunctions of Several VariablesDomain and RangeLimitsContinuityReminders000000000000

Domain and Range

Find the domain of the function

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

What is its range?

What is its graph?

Domain and Range

Find the domain of the function

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$

What is its range? What is its graph? $f: S \rightarrow T$ where:

Domain:

$$S = \{(x, y) : x^2 + y^2 \le 1\}$$

Range:

T = [0, 1]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Unit B OverviewFunctions of Several VariablesDomain and RangeLimitsContinuityReminders000000000000

Domain and Range

Find the domain of the function

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

What is its range?

What is its graph?

 Unit B Overview
 Functions of Several Variables
 Domain and Range
 Limits
 Continuity
 Reminders

 0
 00
 000
 000
 0
 0

Domain and Range

Find the domain of the function $(x^2 + y^2)$

 $g(x,y) = e^{-(x^2+y^2)}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

What is its range?

What is its graph?

Domain: \mathbb{R}^2

Range: (0,1]

Unit B Overview Functions of Several Variables Domain and Range Limits

0000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Domain and Range

Find the domain and graph of the function

$$h(x,y) = e^{-(x^2+y^2)} \cos\left(\sqrt{x^2+y^2}\right)$$

Domain: \mathbb{R}^2 (i.e., all of the *xy*-plane

Domain and Range

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 Unit B Overview
 Functions of Several Variables
 Domain and Range
 Limits
 Continuity

 0
 00
 0000
 000
 000

Domain and Range

Find the domain and graph of the function

$$h(x,y) = e^{-(x^2+y^2)} \cos\left(\sqrt{x^2+y^2}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Domain: \mathbb{R}^2 (i.e., all of the *xy*-plane

Unit B Overview Functions of Several Variables Domain and Range Limits Continuity Reminders 0 00 000 000 000 000 0

Domain and Range

Match these functions with their domains:

$$\ln(x+y) \qquad \qquad \frac{x^2}{(x-1)^2+y^2} \qquad \qquad \sqrt{x}+\sqrt{y}$$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Limits

Suppose $S \subset \mathbb{R}^m$ and $f : S \to \mathbb{R}$.

If **a** is a point in \mathbb{R}^m and $f(\mathbf{x})$ is defined near $\mathbf{x} = \mathbf{a}$, we say that

$$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=L$$

if we can make $f(\mathbf{x})$ arbitrarily close to *L* by choosing **x** close enough to **a Examples**:

$$\lim_{(x,y)\to(0,0)} e^{-(x^2+y^2)} = 1$$

$$\lim_{(x,y)\to(\pi,\pi/2)}\cos(x)\sin(y) = -1$$

$$\lim_{(x,y)\to(0,0)}\frac{\sin(\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}} = 1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Limits

However, functions of two variables don't always have limits!

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Let's set

$$x = r\cos\theta, \quad y = r\sin\theta$$

What is $f(r \cos \theta, r \sin \theta)$?

 $\cos^2\theta - \sin^2\theta$

What happens as $r \downarrow 0$ if $\theta = 0$?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

What about if $\theta = \pi/4$?

0

Limit Laws

If
$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$$
 and $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = M$:

$$\begin{split} &\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) + g(\mathbf{x}) = L + M \\ &\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) - g(\mathbf{x}) = L - M \\ &\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) \cdot g(\mathbf{x}) = LM \\ &\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) / g(\mathbf{x}) = L/M \quad \text{if } M \neq 0 \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Compositions

If
$$\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = \mathbf{b}$$
 and $\lim_{\mathbf{x}\to\mathbf{b}} f(\mathbf{x}) = L$, then
$$\lim_{\mathbf{x}\to\mathbf{a}} f(g(\mathbf{x})) = L$$

If $\lim_{\mathbf{x}\to \mathbf{a}} g(\mathbf{x}) = c$ and $\lim_{t\to c} f(t) = L$, then $\lim_{\mathbf{x}\to \mathbf{a}} f(g(\mathbf{x}) = L$

Unit B Overview Functions of Several Variables Domain and Range Limits Continuity Reminders 0 00 0000 000 0 0

Continuity

Suppose that $S \subset \mathbb{R}^m$ and $f : S \to \mathbb{R}$. We say that f is continuous at $\mathbf{x} = \mathbf{a}$ if

- **a** lies in the domain of *f*
- $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$ exists
- $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$

If *A* is a set, we say that *f* is continuous on *A* if *f* is continuous at every $\mathbf{a} \in A$

- Polynomial and rational functions are continuous on their domains
- Roots and power functions are continuous on their domains
- Trig and inverse trig functions are continuous on their domains
- Exponential and logarithm functions are continuous on their domains

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Compositions of continuous functions are continuous

Reminders for the Week of September 18-22

- Exam Review Wednesday 9/22 in Class
- Exam 1 at 5:00 PM Wednesday 9/20
- No recitation on Thursday 9/21
- Exam scores should be posted by 5 PM on Thursday 9/21
- Unit B continues on Friday 9/22
- Your exams will be returned to you in Recitation on 9/26

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()