Math 213 - Exam 1 Review

Peter Perry

September 20, 2023

Reminders for the week of September 18-22

- Exam 1 is tonight at 5 PM
- Section 011 - CP 139
- Sections 012-014-CP 153
- Bring your student ID and arrive at least 5 minutes early
- You are allowed one notebook page with definitions and formulas, but no solved problems

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13 - Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces
- September 20 - Exam 1 Review

Cheat Sheet, Part I - Basics

$$
\text { If } P=\left(x_{1}, y_{1}, z_{1}\right) \text { and } Q=\left(x_{2}, y_{2}, z_{2}\right) \text { : }
$$

Distance formula:

$$
|\overrightarrow{P Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Midpoint formula:
The midpoint between P and Q is

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Cheat Sheet, Part II - Vector Products

Vector Products

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle:$

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{gathered}
$$

Cheat Sheet, Part II - Vector Products

Dot Product Cross Product
 Scalar Triple Product

Type	Scalar $\mathbf{a} \cdot \mathbf{b}$	Vector $\mathbf{a} \times \mathbf{b}$	Scalar $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$	
Magnitude	$\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$	$\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$		
Symmetry	$\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$	$\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$	Antisymmetric	
Direction	None!	Right-hand rule	None!	
In Physics	Work	Torque		
In Geometry	Projection	Parallelogram Area	Parallelepiped Area	
Zero If	$\mathbf{a} \perp \mathbf{b}$	$\mathbf{a} \\| \mathbf{b}$	$\mathbf{a}, \mathbf{b}, \mathbf{c}$ coplanar	

Cheat Sheet, Part III: Projections

The projection of \mathbf{a} onto \mathbf{b} is given by

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}\right) \frac{\mathbf{b}}{|\mathbf{b}|}
$$

The first factor is a scalar, the signed length of the component of a in the \mathbf{b} direction

The second factor is a vector, a unit vector in the direction of \mathbf{b}

Cheat Sheet, Part IV - Lines and Planes

Equation of a Line

$$
\langle x(t), y(t), z(t)\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle d_{1}, d_{2}, d_{3}\right\rangle
$$

Equation of a Plane

$$
a x+b y+c z=d
$$

where $\mathbf{n}=\langle a, b, c\rangle$ is a vector normal to the plane, and d is determined by a point on the pane

Lines and Planes

Lines in three-dimensional space are either

- parallel,
- intersecting, or
- skew

Planes in three-dimensional space are either

- parallel, or
- intersecting

Lines and Planes

(1) Are the lines

$$
\begin{aligned}
& x(s)=1+2 s \\
& y(s)=-4+s \\
& z(s)=8+2 s
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=5+t \\
& y(t)=1-t \\
& z(t)=8-3 t
\end{aligned}
$$

parallel, intersecting, or skew?
The lines aren't parallel because their displacement vectors $\langle 2,1,2\rangle$ and $\langle 1,-1,-3\rangle$ are not parallel

To see if they intersect, try to solve the equations

$$
\begin{aligned}
1+2 s & =5+t \\
-4+s & =1-t \\
8+2 s & =8-3 t
\end{aligned}
$$

The first two equations are equivalent to

$$
\begin{aligned}
2 s-t & =4 \\
s+t & =5
\end{aligned}
$$

$s=3, t=2$. This doesn't work in the third equation so the lines aressew

Lines and Planes

(2) Are the planes

$$
\begin{array}{r}
3 x+y+2 z=6 \\
x+y+z=3
\end{array}
$$

parallel or intersecting? If intersecting, what is the equation for the line of intersection?

The normal vectors are $\mathbf{n}_{1}=\langle 3,1,2\rangle$ and $\mathbf{n}_{2}=\langle 1,1,1\rangle$ so the planes are not parallel. A displacement vector for the line of intersection is

$$
\mathrm{d}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & 2 \\
1 & 1 & 1
\end{array}\right|=-\mathrm{i}-\mathrm{j}+2 \mathrm{k}
$$

We can find a point on the line by finding (x, y, z) that satisfy both equations.
Subtracting twice the second equation from the first we get $x-y=0$ so, for example, $(0,0,3)$ is a point in the intersection. So we get

$$
\langle x(t), y(t), z(t)\rangle=\langle 0,0,3\rangle+t\langle-1,-1,2\rangle
$$

Space Curves

A space curve is given by: $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad a \leq t \leq b$

The derivative

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

gives:

- The tangent vector $\mathbf{r}^{\prime}(t)$
- The instantaneous speed $\left|\mathbf{r}^{\prime}(t)\right|$
- The arc length.

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The arc length function
$\mathbf{r}(t)=\langle t \cos t, t \sin t, t\rangle$

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}\left(t^{\prime}\right)\right| d t^{\prime}
$$

Reparametrization

Find the arc length function for the curve

$$
\mathbf{r}(t)=\langle 3 \cos (2 t), 3 \sin (2 t), t\rangle
$$

where $0 \leq t \leq 2 \pi$ and reparametrize by arc length

Hint:

$$
\mathbf{r}^{\prime}(t)=\langle-6 \sin (2 t), 6 \cos (2 t), 1\rangle
$$

Since $r^{\prime}(t)=\langle-6 \sin (2 t), 6 \cos (2 t), 1\rangle$ we get

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{36 \sin ^{2}(2 t)+36 \cos ^{2}(2 t)+1}=\sqrt{37}
$$

So

$$
s(t)=\int_{0}^{t} \sqrt{37} d t=\sqrt{37} t
$$

Reparametrization

Given $s=\sqrt{37} t$ we can solve for t in terms of $s:$

$$
t=\frac{s}{\sqrt{37}}
$$

Subsituting the right-hand side for t in the equation

$$
r(t)=\langle 3 \cos (2 t), 3 \sin (2 t), t\rangle
$$

we get

$$
\mathbf{r}(s)=\langle 3 \cos (2 s / \sqrt{37}), 3 \sin (2 s / \sqrt{37}), s / \sqrt{37}\rangle
$$

Integrals over Curves

If C is the curve

$$
(x(t), y(t)), \quad a \leq t \leq b
$$

then the integral of $f(x, y)$ over C is

$$
\int_{C} f(x, y) d s=\int_{a}^{b} \underbrace{f(x(t), y(t))}_{f(x, y)} \underbrace{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t}_{d s}
$$

If C is the curve

$$
(x(t), y(t), z(t)), \quad a \leq t \leq b
$$

then the integral of $f(x, y, z)$ over C is

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} \underbrace{f(x(t), y(t), z(t))}_{f(x, y, z)} \underbrace{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t}_{d s}
$$

Integrals over Curves

Find $\int_{C} x y^{4} d s$ if C is the right half of the circle $x^{2}+y^{2}=16$ oriented in the counterclockwise direction.

First, the curve is parametrized as follows:

$$
\left.\begin{array}{l}
\qquad \qquad \begin{array}{rl}
x(t)=4 \cos t \\
y(t)=4 \sin t
\end{array} \\
\text { for }-\pi / 2 \leq t \leq \pi / 2 \text {, and } \\
x^{\prime}(t)=-4 \sin t \\
y^{\prime}(t)=4 \cos t
\end{array}\right] \text { } \begin{aligned}
& \text { The speed is } \\
& \qquad \begin{array}{l}
x^{\prime}(t)^{2}+x^{\prime}(t)^{2}
\end{array}=4
\end{aligned}
$$

Now substitute

$$
\int_{C} x y^{4} d s=\int_{-\pi / 2}^{\pi / 2}(4 \cos (t))(4 \sin (t))^{4} 4 d t
$$

Integrals Over Curves

Find $\int_{C} x y z d s$ if C is the curve

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle \quad 0 \leq t \leq 4 \pi
$$

Since $r^{\prime}(t)=\langle-\sin (t), \cos (t), 3\rangle$ you can check that

$$
\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}=\sqrt{10}
$$

Substituting for x, y, z and using $d s=\sqrt{10} d t$ we get

$$
\int_{C} x y z d s=\int_{0}^{4 \pi} t \cos (t) \sin (t) \sqrt{10} d t
$$

Cylinders

$$
x^{2}+(y-z)^{2}=1
$$

Trace in $z=h$:

$$
x^{2}+(y-h)^{2}=1
$$

Circle of radius 1 and center ($0, h, h$)

Quadric Surfaces

Traces of quadric surfaces are conic sections:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
y^{2}=4 p x
$$

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

Quadric Surfaces

Identify quadric surfaces from their equations by the method of traces

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1
$$

Traces for $x=h$:

$$
\frac{y^{2}}{9}+\frac{z^{2}}{4}=1-\frac{h^{2}}{4}
$$

Traces for $y=h$:

$$
\frac{x^{2}}{4}+\frac{z^{2}}{4}=1-\frac{h^{2}}{9}
$$

Traces for $z=h$:

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1-\frac{h^{2}}{4}
$$

You can take $h=0$ and see that the traces of this surface in the $x y, x z$, and $y z$ planes are all ellipses, and you can find where these ellipses intersect the x, y, and z axes.

Quadric Surfaces

Identify quadric surfaces from their equations by the method of traces

$$
\frac{x^{2}}{4}+\frac{y^{2}}{4}-z^{2}=1
$$

Traces for $z=h$:

$$
\frac{x^{2}}{4}+\frac{y^{2}}{4}=1+h^{2}
$$

Traces for $x=0$:

$$
\frac{y^{2}}{4}-z^{2}=1
$$

The traces of this surface in planes $z=h$ are circles:

$$
x^{2}+y^{2}=4\left(1+h^{2}\right)
$$

so the circles have center $(0,0)$ and radius $2 \sqrt{1+h^{2}}$. The traces in the $y z$ plane are hyperbolas (blue dashed lines).

