Unit B Overview	One-Variable Review	Higher-Order Partials	Differential Equations	Reminders
0	00	0000000000000		00

Math 213 - Higher-Order Partial Derivatives

Peter Perry

September 25, 2023

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 Functions of Several Variables
- September 22 Partial Derivatives

Unit B Overview

- September 25 Higher-Order Derivatives
- September 27 The Chain Rule
- September 29 Tangent Planes and Normal Lines
- October 2 Linear Approximation and Error
- October 4 Directional Derivatives and the Gradient
- October 6 Maximum and Minimum Values, I
- October 9 Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 Double Integrals in Polar Coordinates

What Second Derivatives are Good For

Can you locate the maximum, minimum, and inflection point for f(x)?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

What Second Derivatives are Good For

Absolute Mininum at x = 0

Absolute Maximum at x = 0

Neither at x = 0

0

▲□▶▲□▶▲□▶▲□▶ ■ のへで

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Higher-Order Partial Derivatives

Suppose that $f(x, y) = x^3 + xy^2$. The first derivatives are:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 2xy, \qquad \frac{\partial f}{\partial y}(x,y) = 2xy$$

Let's find the second derivatives:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) =$$
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) =$$
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) =$$
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) =$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Partial Derivative Notation

Here are shorthand ways of denoting second partial derivatives:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}$$
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}$$

Note:

 $\frac{\partial^2 f}{\partial y \partial x}$ means differentiate in *x* first, then in *y* f_{xy} means differentiate in x first, then y

Functions to Remember

 $f_x = 2x$ $f_x = 2x$ $f_x = -2x$ $f_{y} = -2y$ $f_v = 2y$ $f_y = -2y$ $f_{xx} = 2, \quad f_{yy} = -2$ $f_{xx} = 2, \quad f_{yy} = 2$ $f_{xx} = -2, \quad f_{yy} = -2$ $f_{xy} = f_{yx} = 0$ $f_{xy} = f_{yx} = 0$ $f_{xy} = f_{yx} = 0$ ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Derivatives to Remember - Sneak Preview

If f(x, y) is a function of two variables:

The vector

$$(\nabla f)(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

is called the *gradient vector* - it is the real "first derivative." It vanishes at critical points of f(x, y). It points in the direction of greatest change of f

The matrix

$$\operatorname{Hess}(f)(x,y) = \begin{pmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{pmatrix}$$

is called the *Hessian matrix* and is the real "second derivative" for a function of two variables. It is used in the second derivative test for maxima and minima.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Gradient and the Hessian - Sneak Preview

$$f(x,y) = x^2 + y^2$$
 $f(x,y) = -(x^2 + y^2)$ $f(x,y) = x^2 - y^2$

$$(\nabla f)(x,y) = \langle 2x, 2y \rangle$$

Hess $(f)(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

$$(\nabla f)(x,y) = \langle -2x, -2y \rangle$$

Hess $(f)(x,y) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$

Absolute Maximum at (0,0)

$$(\nabla f)(x,y) = \langle 2x, -2y \rangle$$

Hess $(f)(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$

Neither at (0,0)▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

0000000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Functions of Three Variables

Let

$$f(x, y, z) = e^{-\sqrt{2}z} \cos(x) \sin(y)$$

Find

$$f_{xx} + f_{yy} + f_{zz}$$

$$f_{xx}(x,y,z) = _$$

$$f_{yy}(x,y,z) = _$$

$$f_{zz}(x,y,z) = _$$

0000000000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Puzzler #1 - Light

Let $u(x, y) = \sin(x + y)$. Show that u(x, y) solves the differential equation

 $u_{xx} - u_{yy} = 0$

by finding the derivatives u_{xx} and u_{yy} .

 $u_{xx} - u_{yy} =$

0000000000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Puzzler #2 - Heat

Let $u(x, t) = t^{-1/2}e^{-x^2/4t}$. Show that u(x, t) solves the equation

 $u_t = u_{xx}$

by finding the derivatives u_t and u_{xx} .

$$u_t = -\frac{1}{2}t^{-\frac{3}{2}}e^{-x^2/4t} + \frac{1}{4}t^{-\frac{5}{2}}x^2e^{-x^2/4t}$$
$$u_x = -\frac{1}{2}t^{-\frac{3}{2}}xe^{-x^2/4t}$$

 $u_{xx} =$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Puzzler #3 - Patterns

Let $f(x, y) = e^{\alpha x + \beta y}$ where α and β are constants. Can you find a formula for

 $\frac{\partial^{n+m}f}{\partial x^n \partial y^m}(x,y)$

Hint: Try computing the first few derivatives and see if you see a pattern emerging.

More Patterns - Clairaut's Theorem

Can you find the pattern in this picture?

$$u(x,y) = x^{2}y + xy$$
$$u_{x}(x,y) = 2xy + y$$
$$u_{y}(x,y) = x^{2} + x$$
$$u_{xy}(x,y) = 2x + 1$$
$$u_{yx}(x,y) = 2x + 1$$

$$v(x, y) = \sin(x)\cos(y)$$

$$v_x(x, y) = \cos(x)\cos(y)$$

$$v_y(x, y) = -\sin(x)\sin(y)$$

$$v_{xy}(x, y) = -\cos(x)\sin(y)$$

$$v_{yx}(x, y) = -\cos(x)\sin(y)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

▲□▶▲□▶▲□▶▲□▶ □ のQで

Clairaut's Theorem

Theorem (Clairaut) If the partial derivatives $\frac{\partial^2 f}{\partial x \partial y}(x, y)$ and $\frac{\partial^2 f}{\partial y \partial x}(x, y)$ exist and are continuous at (x_0, y_0) , then

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0).$$

This theorem asserts the "equality of mixed partials"

History Break - Clairaut and du Chatelet

Alexis Claude Clairaut (1713-1765) was a French mathematician who worked to prove Newton's conjecture that the earth is an oblate spheroid. He also helped the Marquise du Chatelet (1706-1749) in her celebrated translation of Newton's Principia Mathematica from Latin into French.

Alexis Claude Clairaut

Portrait Courtesy of MacTutor History of Mathematics

Emilie Chatelet

Portrait by Quentin Maurice Latour, courtesy of Wikipida Commons

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Counterexample (Time Permitting)

The function

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

has first derivatives

$$f_x(x,y) = y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{4xy^2}{(x^2 + y^2)^2}$$
$$f_y(x,y) = x \frac{x^2 - y^2}{x^2 + y^2} - xy \frac{4yx^2}{(x^2 + y^2)^2}$$

Compute $f_{xy}(0,0)$ and $f_{yx}(0,0)$ by using the formulas

$$f_{xy}(0,0) = \frac{d}{dy} f_x(0,y), \qquad f_{yx}(0,0) = \frac{d}{dx} f_y(x,0)$$

and the definition of the derivative as a limit.

Unit B Overvie

v One-Variable Revie

ligher-Order Partials

Differential Equations

Reminders

More Light

The equation

 $u_{xx} = u_{tt}$

•0

for a function u(x, t) describes wave motion. The solution

 $u(x,t) = \sin(x-t)$

describes a rightward moving wave. The graph shows

 $0 \le t \le 3$, $-5 \le x \le 10$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

0

Differential Equations

More Heat

The equation

 $u_t = u_{xx}$

0.

describes the temperature in a rod at time *t* (*x* is the distance from the origin along the rod). The function

$$u(x,t) = t^{-\frac{1}{2}}e^{-x^2/4t}$$

describes the temperature of a rod at time *t* if, at time 0, the point x = 0 on the rod is a "hotspot"

イロト 不得 とくほ とくほとう

Higher-Order Partials

Differential Equations

Reminders

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

•

More Homework

- Homework B1 on Limits due 9/25 at 11:59 PM
- Recitation on partial derivatives, higher-order derivatives, 9/26
- Homework B2 on Partial Derivatives due 9/27 at 11:59 PM
- Recitation on the chain rule, 9/28
- Quiz # 4 on limits, partial derivatives due 9/28 at 11:59 PM
- Homework B3 on the Chain Rule due 9/29 at 11:59 PM