Math 213 - The Chain Rule

Peter Perry

September 27, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

The Chain Rule for Functions of One Variable

If $y=f(u), u=g(x)$, and $F(x)=f(g(x))$, then

$$
\frac{d y}{d x}=\frac{d F}{d x}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Find:
(1) $d y / d x$ if $y=\left(x^{2}+1\right)^{5}$
(2) $d y / d x$ if $y=\cos (\tan (x))$
(3) $d y / d x$ if $y=e^{x^{2}+5 x}$

The Chain Rule for Functions of Two Variables - I

Chain Rule: If $f=f(x, y), x=x(s, t), y=y(s, t)$, and $F(s, t)=f(x(s, t), y(s, t))$ then

$$
\begin{aligned}
& \frac{\partial F}{\partial s}(s, t)=\frac{\partial f}{\partial x}(x(s, t), y(s, t)) \frac{\partial x}{\partial s}(s, t)+\frac{\partial f}{\partial y}(x(s, t), y(s, t)) \frac{\partial y}{\partial s}(s, t) \\
& \frac{\partial F}{\partial t}(s, t)=\frac{\partial f}{\partial x}\left(x(s, t), y(s, t) \frac{\partial x}{\partial t}(s, t)+\frac{\partial f}{\partial y}\left(x(s, t), y(s, t) \frac{\partial y}{\partial t}(s, t)\right.\right.
\end{aligned}
$$

Find $\partial F / \partial s$ and $\partial F / \partial t$ if

$$
\begin{aligned}
f(x, y) & =x^{2}+2 x y \\
x(s, t) & =2 s+3 t \\
y(s, t) & =s^{2}+t^{2}
\end{aligned}
$$

and $F(s, t)=f(x(s, t), y(s, t))$

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}
$$

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Let's Compute!

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

If

$$
f(x, y)=x^{2} y+x y^{3}, \quad x=s \cos t, \quad y=s \sin t
$$

and

$$
F(s, t)=f(x(s, t), y(s, t))
$$

find $\partial F / \partial r$ and $\partial F / \partial t$.

$$
\begin{array}{lll}
\frac{\partial f}{\partial x}= & \frac{\partial x}{\partial s}= & \frac{\partial x}{\partial t}= \\
\frac{\partial f}{\partial y}= & \frac{\partial y}{\partial s}= & \frac{\partial y}{\partial t}=
\end{array}
$$

How a Function Changes along a Curve

Suppose that

$$
x(t)=2 \cos (t), \quad y(t)=\sin (t)
$$

If

$$
f(x, y)=x^{2}+y^{2}
$$

find the rate of change of $f(x(t), y(t))$ with respect to t

How a Function Changes along a Curve

Given $f(x, y)$ and functions $x(t), y(t)$, if $F(t)=f(x(t), y(t))$, then

$$
\frac{d}{d t} F(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Implicit Differentiation

Suppose that z is defined implicitly as a function of x, y via

$$
x^{2} y+2 y z=1
$$

Find $\partial z / \partial x$ and $\partial z / \partial y$ by implicit differentiation.

Numerical Differentiation

Suppose $F(s, t)=f(x(s, t), y(s, t))$ and

$$
x(1,2)=3, \quad y(1,2)=4, \quad(\partial x / \partial s)(1,2)=5, \quad(\partial y / \partial s)(1,2)=-4
$$

Suppose that

$$
f_{x}(3,4)=0, \quad f_{y}(3,4)=10
$$

Find $(\partial F)(\partial s)(1,2)$.

Up A Tree

Suppose

$$
h(x, y)=f(x, u(x, y))
$$

Find $\partial h / \partial x$ and $\partial f / \partial y$ in terms of derivatives of f and u.

Reminders for the Week of September 25-29

- Homework B1 on Limits due tonight at 11:59 PM
- Homework B2 on Partial Derivatives due 9/27 at 11:59 PM
- Quiz \# 4 on limits, partial derivatives due 9/28 at 11:59 PM
- Homework B3 on the Chain Rule due 9/29 at 11:59 PM

