Unit B Overview	Review	The Chain Rule Tree	Applications	Reminders
0	0	00000	000	0

Math 213 - The Chain Rule

Peter Perry

September 27, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 Functions of Several Variables
- September 22 Partial Derivatives
- September 25 Higher-Order Derivatives
- September 27 The Chain Rule
- September 29 Tangent Planes and Normal Lines
- October 2 Linear Approximation and Error
- October 4 Directional Derivatives and the Gradient
- October 6 Maximum and Minimum Values, I
- October 9 Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 Double Integrals in Polar Coordinates

The Chain Rule for Functions of One Variable

If
$$y = f(u)$$
, $u = g(x)$, and $F(x) = f(g(x))$,
then

$$\frac{dy}{dx} = \frac{dF}{dx}(x) = f'(g(x)) \cdot g'(x)$$

Find:

1
$$dy/dx$$
 if $y = (x^2 + 1)^5$

2
$$dy/dx$$
 if $y = \cos(\tan(x))$

$$3 \quad dy/dx \text{ if } y = e^{x^2 + 5x}$$

The Chain Rule for Functions of Two Variables - I

Chain Rule: If f = f(x, y), x = x(s, t), y = y(s, t), and F(s, t) = f(x(s, t), y(s, t)) then

$$\frac{\partial F}{\partial s}(s,t) = \frac{\partial f}{\partial x}(x(s,t), y(s,t)) \frac{\partial x}{\partial s}(s,t) + \frac{\partial f}{\partial y}(x(s,t), y(s,t)) \frac{\partial y}{\partial s}(s,t)$$
$$\frac{\partial F}{\partial t}(s,t) = \frac{\partial f}{\partial x}(x(s,t), y(s,t) \frac{\partial x}{\partial t}(s,t) + \frac{\partial f}{\partial y}(x(s,t), y(s,t) \frac{\partial y}{\partial t}(s,t))$$

Find $\partial F / \partial s$ and $\partial F / \partial t$ if

$$f(x, y) = x2 + 2xy$$
$$x(s, t) = 2s + 3t$$
$$y(s, t) = s2 + t2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

and F(s,t) = f(x(s,t), y(s,t))

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

ヘロト 人間 とくほとく ほとう

3

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s}$$

The Chain Rule Tree

You can remember the chain rule using the tree diagram at left:

$\frac{\partial f}{\partial s} =$	$= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} +$	$-\frac{\partial f}{\partial y}\frac{\partial y}{\partial s}$
$\frac{\partial f}{\partial t} =$	$= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} +$	$-\frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s}$$
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$$

If

$$f(x,y) = x^2y + xy^3, \quad x = s\cos t, \quad y = s\sin t,$$

and

$$F(s,t) = f(x(s,t), y(s,t)),$$

find $\partial F / \partial r$ and $\partial F / \partial t$.

$$\frac{\partial f}{\partial x} = \qquad \qquad \frac{\partial x}{\partial s} = \qquad \qquad \frac{\partial x}{\partial t} =$$

$$\frac{\partial f}{\partial y} = \qquad \qquad \frac{\partial y}{\partial s} = \qquad \qquad \frac{\partial y}{\partial t} =$$

Unit B Overview

Keview

The Chain Rule Tree

Applications

Reminders

How a Function Changes along a Curve

Suppose that

$$x(t) = 2\cos(t), \quad y(t) = \sin(t)$$

If

$$f(x,y) = x^2 + y^2,$$

find the rate of change of f(x(t), y(t)) with respect to t

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

How a Function Changes along a Curve

Given f(x, y) and functions x(t), y(t), if F(t) = f(x(t), y(t)), then

$$\frac{d}{dt}F(t) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

nit B Overview	Review	The Chain Rule Tree	Applications	Reminders
0	0	00000	•00	

Implicit Differentiation

Suppose that *z* is defined implicitly as a function of *x*, *y* via

 $x^2y + 2yz = 1$

- コン・4回シュービン・4回シューレー

Find $\partial z / \partial x$ and $\partial z / \partial y$ by implicit differentiation.

Numerical Differentiation

Suppose F(s,t) = f(x(s,t), y(s,t)) and

x(1,2) = 3, y(1,2) = 4, $(\partial x/\partial s)(1,2) = 5$, $(\partial y/\partial s)(1,2) = -4$

Suppose that

$$f_x(3,4) = 0, \quad f_y(3,4) = 10.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Find $(\partial F)(\partial s)(1,2)$.

Up A Tree

Suppose

$$h(x,y) = f(x,u(x,y)).$$

Find $\partial h/\partial x$ and $\partial f/\partial y$ in terms of derivatives of *f* and *u*.

Reminders for the Week of September 25-29

- Homework B1 on Limits due tonight at 11:59 PM
- Homework B2 on Partial Derivatives due 9/27 at 11:59 PM
- Quiz # 4 on limits, partial derivatives due 9/28 at 11:59 PM

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Homework B3 on the Chain Rule due 9/29 at 11:59 PM