Math 213 - Tangent Planes and Normal Lines

Peter Perry

September 29, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

One-Variable Calculus Review

The derivative of f at $x=a$ defines a tangent line to the graph of $y=f(x)$

The derivative also defines a linear approximation $L(x)$ to $f(x)$ near $x=a$ given by

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Tangent Plane to the Graph of $z=f(x, y)$

We'll see how to find

- the tangent plane to the graph of $z=f(x, y)$ at $(x, y)=(a, b)$
- a linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$.

Tangent Plane to the Graph of $z=f(x, y)$

We'll see how to find

- the tangent plane to the graph of

$$
z=f(x, y) \text { at }(x, y)=(a, b)
$$

- a linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$.

Step 1: Find a tangent vector to the curve $z=f(x, b)$ at $(x, y)=(a, b)$

The tangent line has equation

$$
z=f(a, b)+\partial f / \partial x(a, b) \cdot(x-a)
$$

$$
\begin{aligned}
& \text { or } \\
& \langle x, y, z\rangle=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, \frac{\partial f}{\partial x}(a, b)\right\rangle \\
& \text { so } \\
& \quad \mathbf{d}_{x}=\left\langle 1,0, \frac{\partial f}{\partial x}(a, b)\right\rangle
\end{aligned}
$$

Tangent Plane to the Graph of $z=f(x, y)$

We'll see how to find

- the tangent plane to the graph of

$$
z=f(x, y) \text { at }(x, y)=(a, b)
$$

- a linear approximation $L(x, y)$ to $f(x, y)$ near $(x, y)=(a, b)$.

Step 2: Find a tangent vector to the curve $z=f(a, y)$ at $(x, y)=(a, b)$

The tangent line has equation

$$
z=f(a, b)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

or
$\langle x, y, z\rangle=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, \frac{\partial f}{\partial y}(a, b)\right\rangle$
so

$$
\mathbf{d}_{y}=\left\langle 0,1, \frac{\partial f}{\partial y}(a, b)\right\rangle
$$

Tangent Plane to the Graph of $z=f(x, y)$

The vectors
$\mathbf{d}_{x}=\left\langle 1,0, \frac{\partial f}{\partial x}(a, b)\right\rangle, \quad \mathbf{d}_{y}=\left\langle 0,1, \frac{\partial f}{\partial y}(a, b)\right\rangle$
span the tangent plane to the graph of
$f(x, y)$ at $(a, b, f(a, b))$
How do we find its equation?

- A normal to the plane is $\mathbf{n}=\mathbf{d}_{x} \times \mathbf{d}_{y}$
- A point on the plane is $(a, b, f(a, b))$

Tangent Plane to the Graph of $z=f(x, y)$

Two tangent vectors to the plane are

$$
\begin{aligned}
& \mathbf{d}_{x}=\left\langle 1,0, \frac{\partial f}{\partial x}(a, b)\right\rangle \\
& \mathbf{d}_{y}=\left\langle 0,1, \frac{\partial f}{\partial y}(a, b)\right\rangle
\end{aligned}
$$

So the normal vector is

$$
\mathbf{n}=\left\langle-\frac{\partial f}{\partial x}(a, b),-\frac{\partial f}{\partial y}(a, b), 1\right\rangle
$$

The equation of the plane is:

$$
-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)+(z-f(a, b))=0
$$

Tangent Plane to the Graph of $z=f(x, y)$ at (a, b)

$$
-\frac{\partial f}{\partial x}(a, b)(x-a)-\frac{\partial f}{\partial y}(a, b)(y-b)+(z-f(a, b))=0
$$

Solve for z to get

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

This equation defines the tangent plane and also gives a linear approximation to $f(x, y)$ near $(x, y)=(a, b)$:

$$
L(x, y)=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

Puzzler \#1

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

Find the equation of the tangent plane and the linear approximation to $f(x, y)=x^{3} e^{y}$ at $(1,0)$.

Normal Line to the Tangent Plane

The tangent plane to the graph of $f(x, y)$ at $(a, b, f(a, b))$ has normal

$$
\mathbf{n}=\left\langle-\frac{\partial f}{\partial x}(a, b),-\frac{\partial f}{\partial y}(a, b), 1\right\rangle
$$

and contains the point

$$
(a, b, f(a, b))
$$

The normal line to the tangent plane is

$$
\mathbf{r}(t)=\underbrace{\langle a, b, f(a, b)\rangle}_{\text {point }}+t \underbrace{\left\langle-\frac{\partial f}{\partial x}(a, b),-\frac{\partial f}{\partial y}(a, b), 1\right\rangle}_{\text {displacement vector }}
$$

Find the equation of the normal line through the tangent plane to the graph of $f(x, y)=x \cos y$ at $(a, b)=(1,0)$.

Puzzler \#2

Normal line to graph of $z=f(x, y)$ at $(x, y)=$ (a, b) :

$$
\begin{aligned}
& \mathbf{r}(t)=\langle a, b, f(a, b)\rangle+ \\
& \quad t\left\langle-\frac{\partial f}{\partial x}(a, b),-\frac{\partial f}{\partial y}(a, b), 1\right\rangle
\end{aligned}
$$

Find the normal line to the graph of $f(x, y)=x^{2}-2 y^{2}$ at $(x, y)=(2,1)$

Tangent Plane $G(x, y, z)=0$

Suppose that G is a function of three variables so the set of (x, y, z) with

$$
G(x, y, z)=0
$$

is a surface. If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the surface, what is the equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$?

We will study curves $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ with

$$
\mathbf{r}(0)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

and find a vector that is always normal to the tangent vector $\mathbf{r}^{\prime}(0)$.

Tangent Plane to $G(x, y, z)=0$

To find the tangent plane to a surface $G(x, y, z)=0$ we need to find a normal vector to the surface. A curve $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ contained in the surface satisfies $G(x(t), y(t), z(t))=0$. Now differentiate with respect to t :

$$
\frac{\partial G}{\partial x}(x(t), y(t), z(t)) x^{\prime}(t)+\frac{\partial G}{\partial y}(x(t), y(t), z(t)) y^{\prime}(t)+\frac{\partial G}{\partial z}(x(t), y(t), z(t)) z^{\prime}(t)=0
$$

Now set $t=0$ with $(x(0), y(0), z(0))=\left(x_{0}, y_{0}, z_{0}\right)$:

$$
\frac{\partial G}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) x^{\prime}(0)+\frac{\partial G}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) y^{\prime}(0)+\frac{\partial G}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) z^{\prime}(0)=0
$$

If we denote

$$
(\nabla G)\left(x_{0}, y_{0}, z_{0}\right)=\left\langle\frac{\partial G}{\partial x}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial G}{\partial y}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial G}{\partial z}(x(t), y(t), z(t))\right\rangle
$$

then

$$
(\nabla G)\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{r}^{\prime}(0)=0
$$

Tangent Plane to $G(x, y, z)=0$

The vector

$$
(\nabla G)\left(x_{0}, y_{0}, z_{0}\right)=\left\langle\frac{\partial G}{\partial x}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial G}{\partial y}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial G}{\partial z}(x(t), y(t), z(t))\right\rangle
$$

is called the gradient of G at $\left(x_{0}, y_{0}, z_{0}\right)$. If $\mathbf{r}(t)$ is any curve on the surface with $\mathbf{r}(0)=\left(x_{0}, y_{0}, z_{0}\right)$, then

$$
(\nabla G)\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{r}^{\prime}(0)=0
$$

Inotherwords, the gradient of G at $\left(x_{0}, y_{0}, z_{0}\right)$ is a normal to the tangent plane!

Tangent Plane to $G(x, y, z)=0$

$$
\begin{aligned}
& (\nabla G)\left(x_{0}, y_{0}, z_{0}\right) \text { is normal to } G(x, y, z)=0 \text { at } \\
& \left(x_{0}, y_{0}, z_{0}\right)
\end{aligned}
$$

Find the tangent plane and normal line to the surface $x^{2}+y^{2}-z^{2}=4$ at the point $(2,-3,3)$.

$$
\begin{aligned}
&(\nabla G)(x, y, z)= \\
&(\nabla G)(2,-3,3)= \\
&
\end{aligned}
$$

Maxima and Minima, Part I

Find the maximum and minimum values of z for the surface

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}-2 x-4 y-2 z+4=0 \\
(\nabla G)(x, y, z)=\langle 2 x-2,2 y-4,2 z-2\rangle
\end{gathered}
$$

Where is the gradient vertical?

Maxima and Minima, Part II

Find the points on the surface

$$
x^{2}+2 y^{2}+3 z^{2}=72
$$

with the largest and smallest values of $x+y+3 z$.

What is the normal to the surface at any point (x, y, z) ?

What is a normal to the plane $x+y+3 z=c$ for any c ?

Problem courtesy of CLP 3, §2.5

Distance from a Point to a Plane

Find the distance from the point $(2,2,1)$ to the surface $G(x, y, z)=0$ where

$$
G(x, y, z)=x+2 y+z-3
$$

Use the fact that $\langle 2-a, 2-b, 1-c\rangle$ points in the direction of $(\nabla G)(a, b, c)$

Tangent to a Curve of Intersection

Find a tangent vector the curve of intersection of the surfaces

$$
x^{2}+y^{2}+z^{2}=5
$$

and

$$
x^{2}+y^{2}=4 z
$$

at the point $(\sqrt{2}, \sqrt{2}, 1)$
Hint: Use the normals at $(\sqrt{2}, \sqrt{2}, 1)$ to the surfaces

Reminders for the Weeks of September 25-29 and October 2-6

- Homework B3 on the Chain Rule due tonight at 11:59 PM
- Homework B4 on Tangent Planes and Linear Approximation due 10/4 at 11:59 PM
- Quiz \#5 on Higher-order derivatives, the chain rule, tangent planes and linear approximation due 10/5 at 11:59 PM

