Math 213 - Linear Approximation and Error

Peter Perry

October 2, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

Approximation in Calculus I-II

Suppose

$$
\begin{aligned}
f(x) & =x^{3}-2 x^{2} \\
f^{\prime}(x) & =3 x^{2}-4 x \\
f^{\prime \prime}(x) & =6 x-4
\end{aligned}
$$

and

$$
a=1, \quad \Delta x=1 / 3
$$

How can we approximate $f(a+\Delta x)$?

Approximation in Calculus I-II

Suppose

$$
\begin{aligned}
f(x) & =x^{3}-2 x^{2} \\
f^{\prime}(x) & =3 x^{2}-4 x \\
f^{\prime \prime}(x) & =6 x-4
\end{aligned}
$$

and

$$
a=1, \quad \Delta x=1 / 3
$$

How can we approximate $f(a+\Delta x)$?
First try: Linear Approximation

$$
\begin{aligned}
& f(a+\Delta x) \sim f(a)+f^{\prime}(a) \cdot \Delta x \\
& f(1+\Delta x) \sim \underbrace{-1}_{f(1)}+\underbrace{(-1)}_{f^{\prime}(1)} \cdot(\Delta x)
\end{aligned}
$$

What's wrong?

Approximation in Calculus I-II

Suppose

$$
\begin{aligned}
f(x) & =x^{3}-2 x^{2} \\
f^{\prime}(x) & =3 x^{2}-4 x \\
f^{\prime \prime}(x) & =6 x-4
\end{aligned}
$$

and

$$
a=1, \quad \Delta x=1 / 3
$$

How can we approximate $f(a+\Delta x)$?
Second try: Quadratic Approximation

$$
\begin{aligned}
& f(a+\Delta x)=f(a)+f^{\prime}(a) \Delta x+\frac{f^{\prime \prime}(a)}{2}(\Delta x)^{2} \\
& f(1+\Delta x)=\underbrace{-1}_{f(1)}+\underbrace{-1}_{f^{\prime}(1)} \cdot \Delta x+\frac{1}{2} \underbrace{2}_{f^{\prime \prime}(1)} \cdot(\Delta x)^{2}
\end{aligned}
$$

Big Ideas of the Day - Formulas

For a function $f(x)$ of one variable, the quadratic approximation to $f(x)$ near $x=a$ is:

$$
f(a+\Delta x) \sim f(a)+f^{\prime}(a) \Delta x+\frac{f^{\prime \prime}(a)}{2}(\Delta x)^{2}
$$

For a function of $f(x, y)$ of two variables, we can approximate $f(x, y)$ near $(x, y)=(a, b)$ by quadratic approximation to the function

$$
F(t)=f(a+t \Delta x, b+t \Delta y)
$$

because

$$
\begin{aligned}
& F(0)=f(a, b) \\
& F(1)=f(a+\Delta x, b+\Delta y)
\end{aligned}
$$

Big Ideas of the Day - Pictures

Let

$$
\begin{aligned}
& F(t)=f(x(t), y(t)) \\
& x(t)=a+t \Delta x \\
& y(t)=b+t \Delta y
\end{aligned}
$$

Since

$$
F(0)=f(a, b), \quad F(1)=f(a+\Delta x, b+\Delta y)
$$

we can approximate $f(a+\Delta x, b+\Delta y)$ by applying quadratic approximation to $F(t)$.

Approximation for Functions of Several Variables

Given a function $f(x, y)$ and a point (a, b) where we know $f(a, b)$ and its partial derivatives, how can we find $f(a+\Delta x, b+\Delta y)$?

Idea of the Day: Let

$$
F(t)=f(a+t \Delta x, b+t \Delta y)
$$

Notice that:

- $F(0)=f(a, b)$ and $g(1)=f(a+\Delta x, b+\Delta y)$
- $F^{\prime}(0)=\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y$
- $F^{\prime \prime}(0)=\frac{\partial^{2} f}{\partial x^{2}}(a, b)(\Delta x)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(a, b)(\Delta x \Delta y)+\frac{\partial f^{2}}{\partial y^{2}}(a, b)(\Delta y)^{2}$

We will check these formulas in class!
From

$$
F(t) \sim F(0)+F^{\prime}(0) \cdot t+\frac{1}{2} F^{\prime \prime}(0) t^{2}
$$

with $t=1$, we can get an approximation of $f(a+\Delta x, b+\Delta x)$

Big Result of the Day

$$
\begin{aligned}
f(a+\Delta x, y & +\Delta y) \sim f(a, b) \\
& +\underbrace{\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y}_{\text {linear approximation }} \\
& +\underbrace{\frac{1}{2}\left(\frac{\partial^{2} f}{\partial x^{2}}(a, b)(\Delta x)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(a, b)(\Delta x \Delta y)+\frac{\partial f^{2}}{\partial y^{2}}(a, b)(\Delta y)^{2}\right)}_{\text {quadratic correction }}
\end{aligned}
$$

Puzzler \# 1

$$
\begin{aligned}
& f(a+\Delta x, y+\Delta y) \\
& \sim f(a, b) \\
&+\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y
\end{aligned}
$$

Find the linear approximation to $f(x, y)=\sqrt{x^{2}+y^{2}}$ at $(3,4)$ and use it to approximate $\sqrt{(3.01)^{2}+(3.98)^{2}}$

Error Analysis

Suppose we are approximating a quantity Q and make an error ΔQ.
"Error" comes in (at least) three flavors.

- Absolute error: ΔQ
- Relative error: $\frac{\Delta Q}{Q}$
- Percentage error: $100 \frac{\Delta Q}{Q}$

We'll show how to use linear approximation to estimate the error made in computing a quantity Q from input measurements with error.

Puzzler \#2

We measure the sides of a box as x, y, z with some percentage error. Secretly, the box's sides are $x=10, y=20, z=20$ in appropriate units.
(1) If we make a 2% error in each measurement, what is the maximum percentage error we make in computing the volume from our measurements?
(2) How accurate do our measurements have to be to compute $V(x, y, z)=x y z$ with no more than 1% error?

$$
\begin{aligned}
V(x+\Delta x, y+\Delta y, z+\Delta z) & \sim V(x, y, z)+ \\
& \frac{\partial V}{\partial x}(x, y, z) \Delta x+\frac{\partial V}{\partial y}(x, y, z) \Delta y+\frac{\partial V}{\partial z}(x, y, z) \Delta z
\end{aligned}
$$

Puzzler \#3

The volume of a cylinder having radius r and height h is $V=\pi r^{2} h$. What is the percentage increase in V is r is increased by 2% and h is increased by 2% ?

Quadratic Approximation

Find the quadratic approximation to $f(x, y)=e^{2 x} \sin (3 y)$ at $(x, y)=(0,0)$ by cheating. ${ }^{1}$
${ }^{1}$ To be clear, what I mean here is finding an easy shortcut to the answer. Actual cheating is, of course, forbidden by University regulations.

Reminders for the Week of October 2-6

- Homework B4 due on Wednesday 10/4 at 11:59 PM
- Quiz \#5 on higher-order derivatives, chain rule, and tangent planes due at 11:59 PM

