Unit B Overview	Directional Derivatives	The Gradient	Applications	Reminders
0	000	0000	00	

Math 213 - Directional Derivatives and the Gradient

Peter Perry

October 4, 2023

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 Functions of Several Variables
- September 22 Partial Derivatives
- September 25 Higher-Order Derivatives
- September 27 The Chain Rule
- September 29 Tangent Planes and Normal Lines
- October 2 Linear Approximation and Error
- October 4 Directional Derivatives and the Gradient
- October 6 Maximum and Minimum Values, I
- October 9 Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 Double Integrals in Polar Coordinates

Directional Derivatives

he Gradient

Applications

Reminders

Problem of the Day

Water always flows downhill in the steepest direction. Suppose that the height in feet near a certain mountaintop is given by

$$f(x,y) = 2000 - x^2 - 2y^2$$

A stream of water starts at $(x, y) = (1, \frac{1}{2})$. What path does it take downhill?

Problem: How do we find which direction is the steepest one at each point?

Adapted from Libre Texts

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Directional Derivatives

Let's find out:

- How to find the rate of change of *f* at (*a*, *b*) in any direction **u**, where **u** is a unit vector
- How to find the direction of maximum change at (*a*, *b*)

if $\mathbf{u} = u_x \mathbf{i} + u_y \mathbf{j}$, the rate of change we want is h'(0) where

 $h(t) = f(a + tu_x, b + tu_y)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Directional Derivatives

Let's find out:

- How to find the rate of change of *f* at (*a*, *b*) in any direction **u**, where **u** is a unit vector
- How to find the direction of maximum change at (*a*, *b*)

if $\mathbf{u} = u_x \mathbf{i} + u_y \mathbf{j}$, the rate of change we want is h'(0) where

$$h(t) = f(a + tu_x, b + tu_y)$$

We get

$$h'(0) = \frac{\partial f}{\partial x}(a,b)u_x + \frac{\partial f}{\partial y}(a,b)u_y$$

or

$$h'(0) = \left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle \cdot \mathbf{u}$$

Directional Derivatives

he Gradient 0000 Applications

Reminders

Directional Derivatives

If (a, b) is a point and **u** is a unit vector, the directional derivative of *f* at (a, b) in the direction **u** is given by

$$D_{\mathbf{u}}f(a,b) = (\nabla f)(a,b) \cdot \mathbf{u}$$

where

$$\nabla f(a,b) = \left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle$$

is the *gradient* of f at (a, b).

Find the gradient of $f(x, y) = 2000 - x^2 - 2y^2$ and use it to find the directional derivative of f(x, y) at $(1, \frac{1}{2})$ in the direction of the vector $\mathbf{i} + \mathbf{j}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Directional Derivativ 000 The Gradient

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Gradient - Big Idea of the Day

The directional derivative of f at (a, b) in the direction **u** is

$$D_{\mathbf{u}}f(a,b) = (\nabla f)(a,b) \cdot \mathbf{u}$$

The directional derivative is:

Directional Derivativ

The Gradient

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Gradient - Big Idea of the Day

The directional derivative of *f* at (a, b) in the direction **u** is

$$D_{\mathbf{u}}f(a,b) = (\nabla f)(a,b) \cdot \mathbf{u}$$

The directional derivative is:

• *most positive* when **u** is in the direction of $(\nabla f)(a, b)$,

 $\nabla f(a,b)$

Directional Derivativ

The Gradient

The Gradient - Big Idea of the Day

The directional derivative of *f* at (a, b) in the direction **u** is

$$D_{\mathbf{u}}f(a,b) = (\nabla f)(a,b) \cdot \mathbf{u}$$

The directional derivative is:

- *most positive* when **u** is in the direction of $(\nabla f)(a, b)$,
- *most negative* when **u** points in the opposite direction from (∇*f*)(*a*, *b*)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Directional Derivativ

The Gradient

The Gradient - Big Idea of the Day

The directional derivative of *f* at (a, b) in the direction **u** is

$$D_{\mathbf{u}}f(a,b) = (\nabla f)(a,b) \cdot \mathbf{u}$$

The directional derivative is:

- *most positive* when **u** is in the direction of $(\nabla f)(a, b)$,
- *most negative* when **u** points in the opposite direction from (∇*f*)(*a*, *b*)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 $\nabla f(a,b)$

The Gradient - Big Idea of the Day

The gradient

$$(\nabla f)(a,b) = \left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the true "first derivative" of a function of two variables.

- $(\nabla f)(a, b)$ points in the direction of greatest increase of *f* at (a, b)
- $-(\nabla f)(a, b)$ points in the direction of greatest decrease.
- $|(\nabla f)(a,b)|$ is the maximum rate of change of f at (a,b).

Directional Derivative

Look - Here's Proof!

At left is a contour map for the function

$$f(x) = 2000 - (x^2 + 2y^2)$$

showing the gradient vector at various points

For this function,

$$(\nabla f)(x,y) = \langle -2x, -4y \rangle$$

How is the direction of the gradient related to the level curves of *f*?

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

The Gradient Also Works for Functions of Three Variables

If g(x, y, z) is a function of three variables, we define

$$(\nabla g)(a,b,c) = \left\langle \frac{\partial g}{\partial x}(a,b,c), \frac{\partial g}{\partial y}(a,b,c), \frac{\partial g}{\partial z}(a,b,c) \right\rangle$$

The gradient points in the direction of maximum increase of *g*, and that rate of increase is $|(\nabla g)(a, b, c)|$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Find the direction of greatest change of the function $g(x, y, z) = x^2 + 2y^2 + 4z^2$ at (x, y, z) = (2, 1, 2).

Directional Derivatives

he Gradient 0000

Falling Water Revisited

Recall the height function for the mountain

$$f(x,y) = 2000 - x^2 - 2y^2$$

Its gradient is

$$(\nabla f)(x,y) = \langle -2x, -4y \rangle$$

so the water follows

$$-(\nabla f)(x,y) = \langle 2x, 4y \rangle$$

starting at $(x, y) = (1, \frac{1}{2})$

If the path of the water is given by (x(t), y(t), z(t)) then

$$\begin{aligned} \dot{x}(t) &= 2x(t) \\ \dot{y}(t) &= 4y(t) \\ z(t) &= f(x(t), y(t)) \end{aligned}$$

Directional Derivative

he Gradient 0000 Applications

Reminders

Falling Water Revisited

 $\begin{aligned} \dot{x}(t) &= 2x(t) \\ \dot{y}(t) &= 4y(t) \\ z(t) &= f(x(t), y(t)) \end{aligned}$

where $(x(0), y(0)) = (1, \frac{1}{2})$

You can solve these differential equations and find that

$$x(t) = e^{2t}, \quad y(t) = \frac{1}{2}e^{4t}$$

so the curve it travels is

$$y = \frac{1}{2}x^2$$
, $z = 2000 - x^2 - 2y^2$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adapted from Libre Texts

Directional Derivative

he Gradient

Applications

Reminders

Gradient Descent

Find a local minimum of the function

$$f(x,y) = (x^2 - y^2)e^{-(x^2 + y^2)}$$

We'll start with a guess and use

$$\begin{aligned} (\nabla f)(x,y) &= \left\langle -2x(x^2 - y^2 - 1)e^{-(x^2 + y^2)}, \\ &\quad 2y(-x^2 + y^2 - 1)e^{-(x^2 + y^2)} \right\rangle \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

to move in the direction of greatest decrease

Homework: Google "Gradient Descent" and see what links come up!

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Reminders for the Week of October 2-6

- Homework B4 due on Wednesday 10/4 at 11:59 PM
- Quiz #5 on higher-order derivatives, chain rule, and tangent planes due at 11:59 PM