Math 213 - Vectors

Peter Perry

August 23, 2023

Unit A: Vectors, Curves, and Surfaces

- August 21 - Points
- August 23 - Vectors
- August 25 - Dot Product
- August 28 - Cross Product
- August 30 - Equations of Planes
- September 1 - Equations of Lines
- September 6 - Curves
- September 8 - Integrating Along Curves
- September 11 - Integrating Along Curves
- September 13-Sketching Surfaces
- September 15 - Cylinders and Quadric Surfaces

Right-Handed Coordinate Systems

The $x y z$ coordinate system we are using is a right-handed coordinate system as the pictures below show:

Vectors

A vector is a quantity with magnitude and direction. It specifies a displacement from one point to another.

Vectors

A vector is a quantity with magnitude and direction. It specifies a displacement from one point to another.

$$
\overrightarrow{P_{1} P_{2}}=\langle 3,2\rangle
$$

$$
\overrightarrow{P_{1} P_{2}}=\langle 2,3,3\rangle
$$

Vectors

A vector can also specify a displacement from one nonzero point to another

$$
\overrightarrow{P_{1} P_{2}}=\langle\quad, \quad\rangle
$$

$$
\overrightarrow{P_{1} P_{2}}=\langle 5,-4\rangle
$$

$$
\overrightarrow{P_{1} P_{2}}=\langle\quad, \quad, \quad\rangle
$$

$$
\overrightarrow{P_{1} P_{2}}=\langle 1,2,-3\rangle
$$

Vector Notation

Vectors in two dimensions are denoted $\mathbf{v}=\langle a, b\rangle$ where:
a is the displacement in the x direction
b is the displacement in the y direction
Vectors in three dimensions are denoted $\mathbf{w}=\langle a, b, c\rangle$ where:
a is the displacement in the x direction
b is the displacement in the y direction
c is the displacement in the z direction

Pro Tip: A point in the $x y$ plane is denoted (a, b). A vector in the $x y$ plane is denoted $\langle a, b\rangle$.

Similarly, a point in the $x y z$ plane is denoted (a, b, c). A vector in the $x y z$ plane is denoted by $\langle a, b, c\rangle$.

Vector Notation

In this picture, the vector

$$
\mathbf{v}=\langle 5,-4\rangle
$$

goes from the point $P_{1}(-3,2)$ to the point $P_{2}(2,-2)$

Vector Addition

If \mathbf{v} and \mathbf{w} are vectors, representing displacements, the net result of those two displacements is the vector sum $\mathbf{v}+\mathbf{w}$.

What is $\mathbf{v}+\mathbf{w}$?
$\langle 3,2\rangle$

What is $\mathbf{w}+\mathbf{v}$?
$\langle 3,2\rangle$

The Parallelogram Law of Vector Addition

This diagram shows the vector $\operatorname{sum} \mathbf{v}+\mathbf{w}$. What happens if we reverse the order?

The Parallelogram Law of Vector Addition

The Parallelogram Law of Vector Addition

We see that vector addition commutes, that is

$$
\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}
$$

for any vectors \mathbf{v} and \mathbf{w}

Vector Subtraction

If \mathbf{v} is a vector, then $-\mathbf{v}$ is a vector with the same magnitude but in the opposite direction

The difference of two vectors is

$$
\mathbf{v}-\mathbf{w}=\mathbf{v}+(-\mathbf{w})
$$

Vector Subtraction

Which of the two dashed vectors

is $\mathbf{v}+\mathbf{w}$?
Which is $\mathbf{v}-\mathbf{w}$?
Find $\mathbf{v}+\mathbf{w}$ and $\mathbf{v}-\mathbf{w}$ if

$$
\mathbf{v}=\langle 2,1\rangle
$$

and

$$
\mathbf{w}=\langle 1,3\rangle
$$

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=\langle 2+1,1+3\rangle=\langle 3,4\rangle \\
& \mathbf{v}-\mathbf{w}=\langle 2-1,1-3\rangle=\langle 1,-2\rangle
\end{aligned}
$$

Scalar Multiplication

We can multiply a vector \mathbf{v} by a scalar (that is, a real number) s and get a new vector $c v$.

Addition and Scalar Mutiplication

If $\mathbf{v}=\langle 2,-1,3\rangle$ and $\mathbf{w}=\langle-1,0,1\rangle$, find:
(1) $2 \mathbf{v}+3 \mathbf{w}$
(2) $v-3 w$

$$
\begin{aligned}
2 \mathbf{v}+3 \mathbf{w} & =\langle 4,-2,6\rangle+\langle-3,0,3\rangle \\
& =\langle 1,-2,9\rangle
\end{aligned}
$$

scalar multiply first!
add components

$$
\begin{aligned}
\mathbf{v}-3 \mathbf{w} & =\langle 2,-1,3\rangle-\langle-3,0,3\rangle \\
& =\langle 2,-1,3\rangle+\langle 3,0,-3\rangle \\
& =\langle 5,-1,0\rangle
\end{aligned}
$$

scalar multiply first
multiply by -1
add components

Properties of Addition and Scalar Multiplication

0 is the zero vector $(<0,0>$ or $<0,0,0>)$
(1) $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
(2) $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$
(3) $\mathbf{a}+\mathbf{0}=\mathbf{a}$
(4) $\mathbf{a}+(-\mathbf{a})=0$
(5) $s(\mathbf{a}+\mathbf{b})=s \mathbf{a}+s \mathbf{b}$
(6) $(s+t) \mathbf{a}=s \mathbf{a}+t \mathbf{a}$
(7) $\quad(s t) \mathbf{a}=s(t \mathbf{a})$
(8) $1 \mathbf{a}=\mathbf{a}$

These properties are about the...
(1) commutative law
(3) additive identity
(5) distributive law
(7) associative law (\times)
(2) associative law (+)
(4) additive inverse
(6) distributive law
(8) scalar identity

Length of a Vector

The length of \mathbf{v}, denoted $|\mathbf{v}|$, is the length of the hypoteneuse c so

$$
|\mathbf{v}|=\sqrt{a^{2}+b^{2}}
$$

If

$$
\mathbf{v}=\langle 3,1\rangle
$$

what are the lengths of $\mathbf{v}, 2 \mathbf{v},-2 \mathbf{v}$, and $\frac{1}{2} \mathbf{v}$?

What is the length of a vector $\mathbf{v}=\langle a, b, c\rangle$?
$|\mathbf{v}|=\sqrt{a^{2}+b^{2}+c^{2}}$

Puzzler \#1

Suppose $\mathbf{a}=\langle-1,0,1\rangle$. What is $|\mathbf{a}|$?
What is $\mathbf{b}=\frac{1}{|\mathbf{a}|} \mathbf{a}$?
What is the length of \mathbf{b} ?

$$
\begin{aligned}
|\mathbf{a}| & =\sqrt{1+0+1}=\sqrt{2} \\
\mathbf{b} & =\frac{1}{\sqrt{2}}\langle-1,0,1\rangle=\left\langle-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

Puzzler \#1

Suppose $\mathbf{a}=\langle-1,0,1\rangle$. What is $|\mathbf{a}|$?
What is $\mathbf{b}=\frac{1}{|\mathbf{a}|} \mathbf{a}$?
What is the length of \mathbf{b} ?

$$
\begin{aligned}
|\mathbf{a}| & =\sqrt{1+0+1}=\sqrt{2} \\
\mathbf{b} & =\frac{1}{\sqrt{2}}\langle-1,0,1\rangle=\left\langle-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

Moral: If a is a nonzero vector, the vector

$$
\mathbf{b}=\frac{1}{|\mathbf{a}|} \mathbf{a}
$$

is a vector of length 1 in the same direction as a

Unit Vectors

A unit vector is a vector with length 1.
Suppose that $\mathbf{v}=\langle 2,-1,2\rangle$. Find a unit vector in the direction of \mathbf{v}.
First,

$$
|\mathbf{v}|=\sqrt{2^{2}+1^{2}+2^{2}}=3
$$

Next, a unit vector in the direction of \mathbf{v} is

$$
\frac{1}{|\mathrm{v}|} \mathrm{v}=\frac{1}{3}\langle 2,-1,2\rangle=\left\langle\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right\rangle
$$

Unit Vectors

A unit vector is a vector of length 1.

The vectors

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0\rangle \\
& \mathbf{j}=\langle 0,1\rangle
\end{aligned}
$$

are standard basis vectors in two dimensions

Unit Vectors

A unit vector is a vector of length 1.

The vectors

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

are standard basis vectors in three dimensions

Representing Vectors

Using the unit vectors

$$
\mathbf{i}=\langle 1,0\rangle, \quad \mathbf{j}=\langle 0,1\rangle
$$

we can represent any vector in the plane as a sum:

$$
<3,2>=3 \mathbf{i}+2 \mathbf{j}
$$

or more generally

$$
<a, b>=a \mathbf{i}+b \mathbf{j}
$$

Representing Vectors

Using the unit vectors

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

we can represent any vector in space as a sum:

$$
\langle 3,2,3\rangle=3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}
$$

or more generally

$$
\langle a, b, c\rangle=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

Parallel Vectors

Two vectors \mathbf{a} and \mathbf{b}

- are parallel if $\mathbf{a}=s \mathbf{b}$ for some nonzero real number s
- are in the same direction if $\mathbf{a}=s \mathbf{b}$ for some number $s>0$

Suppose that

$$
\mathbf{v}=\langle 2,-1,3\rangle
$$

Which of the following vectors are parallel to \mathbf{v} ? Which are in the same direction?

$$
\begin{aligned}
\mathbf{a} & =\langle-2,1,-3\rangle \\
\mathbf{b} & =\langle 1,0,-2\rangle \\
\mathbf{c} & =\langle 6,-3,9\rangle
\end{aligned}
$$

Parallel Vectors

Suppose that $\mathbf{v}=\langle 2,-2,2\rangle$.
What are all the unit vectors parallel to \mathbf{v} ?
What are all the unit vectors in the same direction as \mathbf{v} ?
Since $|\mathbf{v}|=\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}$, a unit vector in the direction of \mathbf{v} is

$$
\mathbf{u}=\frac{1}{2 \sqrt{3}}\langle 2,-2,2\rangle=\left\langle\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle
$$

This vector points in the same direction as \mathbf{v}.
Another vector parallel to \mathbf{v} but in the opposite direction is

$$
-\mathbf{u}=\left\langle-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle
$$

These two vectors are the only unit vectors parallel to \mathbf{v}.

Reminders for the Week of August 21-25

- Thursday 8/24 - Recitation on CLP3 1.2-Vectors
- Friday 8/25-Read CLP3 1.2 on Dot Products before class
- Friday 8/25 - Webwork A1 due at 11:59 PM

