Math 213 - Local Maxima and Minima

Peter Perry

October 6, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

Review - Local Maxima and Minima

A function $y=f(x)$ has a local minimum at $x=a$ if $f(a) \leq f(x)$ for all x sufficiently close to a

A function $y=f(x)$ has a local maximum at $x=a$ if $f(a) \geq f(x)$ for all x sufficiently close to a

Review - Local Maxima and Minima

At left is the graph of

$$
f(x)=\frac{1}{3} x^{3}-x^{2}
$$

Note that

$$
\begin{aligned}
f^{\prime}(x) & =x^{2}-2 x \\
f^{\prime \prime}(x) & =2 x-2
\end{aligned}
$$

Where are the critical points of f ?
Where does f have a local maximum?
Where does f have a local minimum?

Review - Local Maxima and Minima

At left is the graph of

$$
f(x)=\frac{1}{3} x^{3}-x^{2}
$$

Note that

$$
\begin{aligned}
f^{\prime}(x) & =x^{2}-2 x \\
f^{\prime \prime}(x) & =2 x-2
\end{aligned}
$$

Where are the critical points of f ?
Where does f have a local maximum?
Where does f have a local minimum?
Moral: To find local maxima and minima:

- Find the critical points of $f(x)$
- Apply the second derivative test to each critical point

Review - Global Maxima and Minima

A function $f(x)$ has a global minimum at $x=c$ if $f(c) \leq f(x)$ for all x in the domain of $f(x)$

A function $f(x$ has a global maximum at $x=c$ if $(c) \geq f(x)$ for all x in the domain of $f(x)$.

Review - Global Maxima and Minima

A function $f(x)$ has a global minimum at $x=c$ if $f(c) \leq f(x)$ for all x in the domain of $f(x)$

A function $f(x$ has a global maximum at $x=c$ if $(c) \geq f(x)$ for all x in the domain of $f(x)$.

To find the global maximum and minimum of $f(x)$ on $[a, b]$:

- Find the critical points of $f(x)$ on (a, b)
- Evaluate $f(x)$ at the critical points and the endpoints $x=a$ and $x=b$

When does $f(x, y)$ have a critical point?

$$
f(x, y)=x^{2}+y^{2},(a, b)=(0,0)
$$

If $f(x, y)$ has a local maximum or minimum at (a, b) :

- The function $g(x)=f(x, b)$ has a local maximum or minimum
- The function $h(x)=f(a, y)$ has a local maximum or minimum

When does $f(x, y)$ have a critical point?

$$
f(x, y)=x^{2}+y^{2},(a, b)=(0,0)
$$

If $f(x, y)$ has a local maximum or minimum at (a, b) :

- The function $g(x)=f(x, b)$ has a local maximum or minimum
- The function $h(x)=f(a, y)$ has a local maximum or minimum

So:

$$
\begin{aligned}
g^{\prime}(a) & =\frac{\partial f}{\partial x}(a, b)=0 \text { or } \mathrm{DNE} \\
h^{\prime}(b) & =\frac{\partial f}{\partial y}(a, b)=0 \text { or } \mathrm{DNE}
\end{aligned}
$$

Puzzler \#1

Find the critical point(s) of the function

$$
f(x, y)=x^{2}-2 x y+2 y^{2}+2 x-6 y+12
$$

Note that

$$
\frac{\partial f}{\partial x}=2 x-2 y+2, \quad \frac{\partial f}{\partial y}=-2 x+4 y-6
$$

Puzzler \#2

Find the critical points of the function

$$
f(x, y)=x^{3}+y^{3}-3 x y
$$

Note that

$$
\frac{\partial f}{\partial x}=3 x^{2}-3 y, \quad \frac{\partial f}{\partial y}=3 y^{2}-3 x
$$

Local Minima

Recall that $f(x, y)=x^{2}-2 x y+2 y^{2}+2 x-6 y+12$ has a single critical point at $(1,2)$. Is it a local maximum, local minimum, or neither?

Compute $f(1+\Delta x, 2+\Delta y)$ and see that happens!

Local Maxima

Let

$$
f(x, y)=-x^{2}-y^{2}
$$

and note that $f(x, y)$ has a single critical point at $(0,0)$.
$f(0+\Delta x, 0+\Delta y)=-(\Delta x)^{2}-(\Delta y)^{2}$

Local Neither

Let

$$
f(x, y)=x^{2}-y^{2} .
$$

Note that $f(x, y)$ has a critical point at $(0,0)$.

But

$$
f(0+\Delta x, 0+\Delta y)=(\Delta x)^{2}-(\Delta y)^{2}
$$

Looking Under the Hood

Remember quadratic approximation?

$$
\begin{aligned}
f(a+\Delta x, b+\Delta y) & =f(a, b)+\left(\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y\right) \\
+ & \frac{1}{2}\left(\frac{\partial^{2} f}{\partial x^{2}}(a, b)(\Delta x)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(a, b) \Delta x \Delta y+\frac{\partial^{2} f^{2}}{\partial y}(a, b)(\Delta y)^{2}\right)
\end{aligned}
$$

If (a, b) is a critical point, then

$$
\begin{aligned}
f(a+\Delta x, b+\Delta y) & =f(a, b) \\
+ & \frac{1}{2}\left(\frac{\partial^{2} f}{\partial x^{2}}(a, b)(\Delta x)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(a, b) \Delta x \Delta y+\frac{\partial^{2} f}{\partial y^{2}}(a, b)(\Delta y)^{2}\right)
\end{aligned}
$$

so, the second derivatives of f determine whether (a, b) is a local maximum, a local minimum, or neither.

The Second Derivative Test

Suppose that $f(x, y)$ has a critical point at (a, b) and that second derivatives of $f(x, y)$ exist and are continuous near (a, b). Let

$$
D(a, b)=\left|\begin{array}{ll}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{x y}(a, b) & f_{y y}(a, b)
\end{array}\right|
$$

- If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(x, y)$ has a local minimum at (a, b)
- If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(x, y)$ has a local maximum at (a, b)
- If $D(a, b)<0$ then $f(x, y)$ has neither a local maximum nor a local minimum near (a, b)
- If $D(a, b)=0$ then the second derivative test fails

The Second Derivative Test

$$
\begin{aligned}
& D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2} \\
& \text { Minimum if } D(a, b)>0 \text { and } f_{x x}(a, b)>0 \\
& \text { Maximum if } D(a, b)>0 \text { and } f_{x x}(a, b)<0
\end{aligned}
$$

Determine whether $(1,2)$ is a local maximum, local minimum, or neither if $f(x, y)=x^{2}-2 x y+2 y^{2}+2 x-6 y+12$

The second derivatives are:

$$
\begin{array}{ll}
f_{x x}(1,2)=2 & f_{x y}(1,2)=-2 \\
f_{x y}(1,2)=-2 & f_{y y}(1,2)=4
\end{array}
$$

$$
D=\left|\begin{array}{cc}
2 & -2 \\
-2 & 4
\end{array}\right|=8-4=4>0
$$

$$
f_{x x}(1,2)=2>0
$$

So $f(x, y)$ has a local minimum at $(1,2)$.

Puzzler \#3

$$
\begin{aligned}
& D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2} \\
& \text { Minimum if } D(a, b)>0 \text { and } f_{x x}(a, b)>0 \\
& \text { Maximum if } D(a, b)>0 \text { and } f_{x x}(a, b)<0
\end{aligned}
$$

Find and classify the critical points of

$$
f(x, y)=4+x^{3}+y^{3}-3 x y
$$

The first and second partials are:

$$
\begin{aligned}
f_{x}(x, y) & =3 x^{2}-3 y \\
f_{x x}(x, y) & =6 x \\
f_{x y}(x, y) & =-3
\end{aligned}
$$

$$
f_{y}(x, y)=3 y^{2}-3 x
$$

$$
f_{x x}(x, y)=6 x \quad f_{y y}(x, y)=6 y
$$

Puzzler \#3 Solution

We know that the critical points are $(0,0)$ and $(1,1)$ from earlier in the lecture.

For the critical point $(0,0)$:
$\left|\begin{array}{ll}f_{x x}(0,0) & f_{x y}(0,0) \\ f_{x y}(0,0) & f_{y y}(0,0)\end{array}\right|=\left|\begin{array}{cc}0 & -3 \\ -3 & 0\end{array}\right|=-9$
so $(0,0)$ is neither a local maximum nor a local minimum (if you look at the graph you'll see that it's a saddle point)

For the critical point $(1,1)$:

$$
\begin{aligned}
\left|\begin{array}{ll}
f_{x x}(0,0) & f_{x y}(0,0) \\
f_{x y}(0,0) & f_{y y}(0,0)
\end{array}\right| & =\left|\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right| \\
& =36-9=27>0
\end{aligned}
$$

and $f_{x x}(1,1)=6$ so $(1,1)$ is a local minimum of $f(x, y)$.

Reminders for the Week of October 9-13

- Homework B5 due at 11:59 Monday, October 9
- Quiz \#6 on linear approximation, directional derivatives, and the gradient due at 11:59 Thursday, October 12
- Homework B6 on maxima and minima due at 11:59 on Friday, October 13

