Math 213 - Global Maxima and Minima

Peter Perry

October 9, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

Absolute Maxima and Minima, One Variable

Theorem: If $f(x)$ is continous on $[a, b]$ then $f(x)$ has an absolute maximum value and an absolute minimum value on $[a, b]$

To find the absolute maximum and minimum values of $f(x)$ on $[a, b]$:

- Find the critical points of $f(x)$ in (a, b)
- Find the value of $f(x)$ at the critical points and at the endpoints

Example: $f(x)=x^{3}-\frac{9}{2} x^{2}+6 x-1$ on $\left[\frac{1}{2}, \frac{9}{4}\right]$

$$
f^{\prime}(x)=3(x-1)(x-2)
$$

Absolute Maxima and Minima, Two Variables

Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disk $x^{2}+y^{2} \leq 1$.

Step 1: Find interior critical points

$$
\begin{aligned}
& f_{x}(x, y)=2 x-1 \\
& f_{y}(x, y)=2 y-1
\end{aligned}
$$

Solve

$$
\begin{aligned}
& 2 x-1=0 \\
& 2 y-1=0
\end{aligned}
$$

and compute

$$
f\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}
$$

Problem courtesy of our colleagues at University of Texas

Absolute Maxima and Minima, Two Variables

Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disk $x^{2}+y^{2} \leq 1$.

Step 2: Find the maximum and minimum of $f(x, y)$
 on the boundary of the unit disc

Parametrize the circle

$$
\begin{aligned}
& x(t)=\cos (t) \\
& y(t)=\sin (t)
\end{aligned}
$$

for $0 \leq t \leq 2 \pi$ and find the maximum and minimum of

$$
h(t)=f(x(t), y(t))=2-\cos (t)-\sin (t)
$$

on the interval $[0,2 \pi]$

Absolute Maxima and Minima, Two Variables

Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disk $x^{2}+y^{2} \leq 1$.

Step 2 continued:

$$
\begin{aligned}
h(t) & =2-\cos (t)-\sin (t) \\
h^{\prime}(t) & =\sin (t)-\cos (t)
\end{aligned}
$$

$h^{\prime}(t)=0$ if $t=\pi / 4,5 \pi / 4$

t	$h(t)$
0	1
$\pi / 4$	$2-\sqrt{2}$
$5 \pi / 4$	$2+\sqrt{2}$
2π	1

Value at Critical Point: $\frac{1}{2}$
Maximum on Boundary: $2+\sqrt{2}$ at $(\sqrt{2} / 2, \sqrt{2} / 2)$
Minimum on Boundary: $2-\sqrt{2}$ at $(-\sqrt{2} / 2,-\sqrt{2} / 2)$
Maximum Value: $2+\sqrt{2} \quad$ Minimum Value: $2-\sqrt{2}$

Vocabulary Break

If D is a region in the $x y$ plane:

- D is called closed if it contains its boundary points
- D is called open if it does not contain any of its boundary points
- D is called bounded if it can be contained in a disc of bounded radius

Which of the following regions are open? Which are closed?

$-1 \leq x \leq 1,-1 \leq y \leq 1$

$0 \leq x^{2}+y^{2}<1$

$x+y>0$

Absolute Maxima and Minima, Two Variables

Theorem: If $f(x, y)$ is continuous in a closed bounded region D of the $x y$ plane, then f has an absolute maximum value and an absolute minimum value in D.

To find the absolute maximum and minimum values of a function $f(x, y)$ defined on a closed set D in the $x y$-plane:
(1) Find the critical points of $f(x, y)$ in the interior of D
(2) Find the maximum and minimum value of $f(x, y)$ on the boundary of D
(3) List the values of $f(x, y)$ at the critical points together with its maximum and minimum values on the boundary, and find the largest and smallest values

Puzzler \#1

Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+4 y^{2}-2 x^{2} y+4$ on the region $-1 \leq x \leq 1,-1 \leq y \leq 1$.

Step 1: Find the interior critical points of $f(x, y)$

$$
f_{x}(x, y)=2 x-4 x y, \quad f_{y}(x, y)=8 y-2 x^{2}
$$

Example courtesy of Paul's Online Math Notes

Puzzler \#1

Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+4 y^{2}-2 x^{2} y+4$ on the region $-1 \leq x \leq 1,-1 \leq y \leq 1$.
Step 2: Find the maximum and minimum value of $f(x, y)$ on the boundary

(1) $\quad f(1, y)=4 y^{2}-2 y+5 \quad-1 \leq y \leq 1$
(2) $\quad f(x, 1)=-x^{2}+8 \quad-1 \leq x \leq 1$
(3) $f(-1, y)=4 y^{2}-2 y+5 \quad-1 \leq y \leq 1$
(4) $f(x,-1)=3 x^{2}+8 \quad-1 \leq x \leq 1$

Puzzler \# 2

Find the absolute maximum and minimum values of the function

$$
f(x, y)=192 x^{3}+y^{2}-4 x y^{2}
$$

on the triangle with vertices $(0,0),(4,2)$, and $(-2,2)$

Step 1: Find the interior critical points of $f(x, y)$

$$
\begin{aligned}
& f_{x}(x, y)=576 x^{2}-4 y^{2} \\
& f_{y}(x, y)=2 y-8 x y
\end{aligned}
$$

Courtesy of Paul's Online Math Notes

Puzzler \# 2

Find the absolute maximum and minimum values of the function

$$
f(x, y)=192 x^{3}+y^{2}-4 x y^{2}
$$

on the triangle with vertices $(0,0),(4,2)$, and $(-2,2)$

Step 2: Find the maximum and minimum of $f(x, y)$ along the three boundaries

$$
\begin{aligned}
& y=\frac{x}{2} \\
& y=2 \\
& y=-x
\end{aligned}
$$

Courtesy of Paul's Online Math Notes

Reminders for the Week of October 9-13

- Homework B5 due at 11:59 Monday, October 9
- Quiz \#6 on linear approximation, directional derivatives, and the gradient due at 11:59 Thursday, October 12
- Homework B6 on maxima and minima due at 11:59 on Friday, October 13
- Exam 2 takes place on Wednesday, October 18, 5:00-7:00 PM.
- If you need an alternate exam, you need to use the online form to apply no later than Friday, October 13 at 5:00 PM

