Math 213 - Lagrange Multipliers

Peter Perry

October 11, 2023

Unit B: Differential Calculus (and Some Integral Calculus)

- September 18 - Functions of Several Variables
- September 22 - Partial Derivatives
- September 25 - Higher-Order Derivatives
- September 27 - The Chain Rule
- September 29 - Tangent Planes and Normal Lines
- October 2 - Linear Approximation and Error
- October 4 - Directional Derivatives and the Gradient
- October 6 - Maximum and Minimum Values, I
- October 9 - Maximum and Minimum Values, II
- October 11- Lagrange Multipliers
- October 13 -Double Integrals
- October 16 - Double Integrals in Polar Coordinates

Constrained Optimization

A constrained optimization problem takes the form
Find the maximum (or minimum) value of $f(x, y)$ for (x, y) on the curve $g(x, y)=0$

The function $f(x, y)$ is called the objective function
The function $g(x, y)$ is called the constraint function

Example:

Find the maximum and minimum of the function

$$
f(x, y)=x^{2}-10 x-y^{2}
$$

on the ellipse whose equation is

$$
x^{2}+4 y^{2}=16
$$

Lagrange Multipliers

Theorem Suppose that $f(x, y)$ and $g(x, y)$ have continuous partial derivatives in a region of the $x y$ plane that contains the surface S given by $g(x, y)=0$.

Suppose that $\nabla g(x, y) \neq\langle 0,0\rangle$ on S.
If f, restricted to the surface S, has a local extreme value at (a, b), there is a number λ so that

$$
\begin{align*}
& \frac{\partial f}{\partial x}(a, b)=\lambda \frac{\partial g}{\partial x}(a, b) \tag{1}\\
& \frac{\partial f}{\partial y}(a, b)=\lambda \frac{\partial g}{\partial x}(a, b) \tag{2}
\end{align*}
$$

f is the objective function g is the constraint function
λ is the Lagrange multiplier
Equations (1) and (2) are the Lagrange equations

First Example

$$
\begin{aligned}
\frac{\partial f}{\partial x}(a, b) & =\lambda \frac{\partial g}{\partial x}(a, b) \\
\frac{\partial f}{\partial y}(a, b) & =\lambda \frac{\partial g}{\partial x}(a, b) \\
g(x, y) & =0
\end{aligned}
$$

Find the maximum and minimum of the function

$$
f(x, y)=x^{2}-10 x-y^{2}
$$

on the ellipse whose equation is

$$
x^{2}+4 y^{2}=1
$$

Objective function: $f(x, y)=x^{2}-10 x-y^{2}$
Constraint function: $g(x, y)=x^{2}+4 y^{2}-1$
Lagrange Equations and constraint:

$$
\begin{aligned}
2 x-10 & =\lambda(2 x) \\
-2 y & =\lambda(8 y) \\
x^{2}+4 y^{2} & =16
\end{aligned}
$$

Now what?

First Example, Continued

First rule of Lagrange Method: Eliminate the parameter!

$$
f(x, y)=x^{2}-10 x-y^{2}
$$

Lagrange Equations:

$$
\begin{aligned}
2 x-10 & =2 \lambda x \\
-2 y & =8 \lambda y
\end{aligned}
$$

Constraint Equation:

$$
x^{2}+4 y^{2}=16
$$

First Example, Continued

$$
f(x, y)=x^{2}-10 x-y^{2}
$$

Lagrange Equations:

$$
\begin{aligned}
2 x-10 & =2 \lambda x \\
-2 y & =8 \lambda y
\end{aligned}
$$

Constraint Equation:

$$
x^{2}+4 y^{2}=16
$$

First rule of Lagrange Method: Eliminate the parameter!

From the second Lagrange equation, either
(1) $y=0$, or
(2) $\lambda=-1 / 4$

In case (1), we get $x= \pm 4$ from the constraint equation

In case (2), we get $x=4$ so $y=0$
Now test the points $(-4,0)$ and $(4,0)$:
$f(-4,0)=-24, f(4,0)=56$
Conclusion:
Minimum value: -24 Maximum value: 56

Why Does It Work?

Suppose that (a, b) is a local extremum of $f(x, y)$ along $g(x, y)=0$.

Let $(x(t), y(t))$ be a curve along $g(x, y)=0$ with $x(0)=a$, and $y(0)=b$.

Then

$$
F(t)=f(x(t), y(t))
$$

has a local extremum at $t=0$.
So $F^{\prime}(0)=0$ or

$$
\frac{\partial f}{\partial x}(a, b) \cdot x^{\prime}(0)+\frac{\partial f}{\partial y}(a, b) \cdot y^{\prime}(0)=0
$$

That is, $(\nabla f)(a, b)$ is perpendicular to the tangent vector along any curve on the surface $g(x, y)=0$

Since $(\nabla g)(a, b)$ is also perpendicular to any vector tangent to the surface,

$$
(\nabla f)(a, b)=\lambda(\nabla g)(a, b)
$$

Puzzler \# 1

$$
\begin{aligned}
\frac{\partial f}{\partial x}(a, b) & =\lambda \frac{\partial g}{\partial x}(a, b) \\
\frac{\partial f}{\partial y}(a, b) & =\lambda \frac{\partial g}{\partial x}(a, b) \\
g(x, y) & =0
\end{aligned}
$$

Find the maximum and minimum values of $f(x, y)=3 x-4 y$ subject to the constraint $x^{2}+y^{2}=25$

Absolute Maxima and Minima

Find the absolute maximum and minimum of $f(x, y)=4 x^{2}+10 y^{2}$ in the region $x^{2}+y^{2} \leq 4$. Use the Lagrange multiplier method to find the maximum and minimum of $f(x, y)$ on the boundary.

$$
\begin{aligned}
\frac{\partial f}{\partial x}(a, b, c) & =\lambda \frac{\partial g}{\partial x}(a, b, c) \\
\frac{\partial f}{\partial y}(a, b, c) & =\lambda \frac{\partial g}{\partial y}(a, b, c) \\
\frac{\partial f}{\partial z}(a, b, c) & =\lambda \frac{\partial g}{\partial z}(a, b, c) \\
g(a, b, c) & =0
\end{aligned}
$$

Find the maximum and minimum values of $f(x, y, z)=x y z$ subject to the constraint $x+y+z=1$. Assume that $x, y, z \geq 0$.

Two Constraints

The method of Lagrange multipliers also works when there are two constraints.

Problem: Find the maximum and minimum values of $f(x, y, z)$ subject to the constraints

$$
\begin{aligned}
& g(x, y, z)=0 \\
& h(x, y, z)=0
\end{aligned}
$$

The new Lagrange equations are

$$
(\nabla f)(a, b, c)=\lambda(\nabla g)(a, b, c)+\mu(\nabla h)(a, b, c)
$$

with the constraints given above.

Why Does it Work?

Find the maximum and minimum values of $f(x, y, z)=4 y-2 z$ subject to the constraints

$$
g(x, y, z)=\underbrace{2 x-y-z-2=0}_{\text {plane }} \quad h(x, y, z)=\underbrace{x^{2}+y^{2}-1=0}_{\text {cylinder }}
$$

If f has a maximum or minimum at
 (a, b, c), and if $(x(t), y(t), z(t))$ moves along the red curve and passes through (a, b, c) at time $t=0$, then

$$
h(t)=f(x(t), y(t), z(t))
$$

satisfes $h^{\prime}(0)=0$ or

$$
(\nabla f)(a, b, c) \cdot\left\langle x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right\rangle=0
$$

Since the gradient of f is perpendicular to any tangent vector along the curve,

$$
(\nabla f)(a, b, c)=\lambda(\nabla g)(a, b, c)+(\nabla h)(a, b, c)
$$

Two Constraints

Find the maximum and minimum of $f(x, y, z)=4 y-2 z$ subject to the constraints

$$
2 x-y-z=2, \quad x^{2}+y^{2}=1
$$

$$
\begin{aligned}
& g(x, y, z)=2 x-y-z-2 \\
& h(x, y, z)=x^{2}+y^{2}-1 \\
& \quad(\nabla f)=\lambda(\nabla g)+\mu(\nabla h)
\end{aligned}
$$

What are the Lagrange equations and the constraint equations?

Two Constraints

$$
\begin{gathered}
f(x, y, z)=4 y-2 z \\
2 x-y-z=2 \\
x^{2}+y^{2}=1 \\
\langle 0,4,-2\rangle=\lambda\langle 2,-1,-1\rangle+\mu\langle 2 x, 2 y, 0\rangle
\end{gathered}
$$

Solve:

$$
\begin{aligned}
0 & =2 \lambda+2 \mu x \\
4 & =-\lambda+2 \mu y \\
-2 & =-\lambda
\end{aligned}
$$

or

$$
\begin{aligned}
2 \mu x & =-2 \lambda \\
2 \mu y & =-\lambda-4 \\
\lambda & =2
\end{aligned}
$$

Two Constraints

$$
\begin{gathered}
f(x, y, z)=4 y-2 z \\
2 x-y-z=2 \\
x^{2}+y^{2}=1 \\
\langle 0,4,-2\rangle=\lambda\langle 2,-1,-1\rangle+\mu\langle 2 x, 2 y, 0\rangle
\end{gathered}
$$

Solve:

$$
\begin{aligned}
0 & =2 \lambda+2 \mu x \\
4 & =-\lambda+2 \mu y \\
-2 & =-\lambda
\end{aligned}
$$

Using $\lambda=2$:
or

$$
\begin{aligned}
& 2 \mu x=-4 \\
& 2 \mu y=6
\end{aligned}
$$

$$
\begin{aligned}
2 \mu x & =-2 \lambda \\
2 \mu y & =-\lambda-4 \\
\lambda & =2
\end{aligned}
$$

Reminders for the Week of October 9-13

- Quiz \#6 on linear approximation, directional derivatives, and the gradient due at 11:59 Thursday, October 12
- Homework B6 on maxima and minima due at 11:59 on Friday, October 13
- Exam 2 takes place on Wednesday, October 18, 5:00-7:00 PM.
- If you need an alternate exam, you need to use the online form to apply no later than Friday, October 13 at 5:00 PM

