Math 213 - Double Integrals in Polar Coordinates

Peter Perry

October 16, 2023

Exam II Reminders

- Your Exam covers webworks B1-B6
- Your Exam takes place on Wednesday October 18, 5:00-7:00 PM
- You are allowed a one-page sheet of notes (both sides OK)
- Section 011 will take the exam in CP 139
- Sections 012-014 will take the exam in CP 153
- You are only in section 011 if you have your recitation with Mr. Berggren from 12:00-12:50 PM TR
- You are in section 012 if you have Mr. Berggren 1:00-1:50 PM TR
- You are in section 013 if you have Mr. Alsteri 2:00-2:50 PM TR
- You are in section 014 if you have Mr. Alsetri 3:00-350 PM TR

Unit C: Multiple Integrals

- October 13 - Double Integrals
- October 16 - Double Integrals in Polar Coordinates
- October 18 - Exam II Review
- October 20 - Triple Integrals
- October 25 - Triple Integrals, Cylindrical Coordinates
- October 27 - Triple Integrals, Spherical Coordinates
- October 30 - Triple Integrals, General Coordinates
- November 1 - Vector Fields
- November 3 - Conservative Vector Fields
- November 6 - Line integrals
- November 8 - Parametrized Surfaces
- November 10 - Tangent Planes to Surfaces
- November 13 - Surface Integrals
- November 15 - Exam III Review

Review

We learned to compute the double integral

$$
\iint_{\mathcal{R}} f(x, y) d A
$$

of a function $f(x, y)$ over a region \mathcal{R} in the $x y$ plane:
(1) Over a rectangle:

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{a}^{b} \underbrace{\left(\int_{c}^{d} f(x, y) d y\right)}_{\text {function of } x} d x
$$

or also

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{c}^{d} \underbrace{\left(\int_{a}^{b} f(x, y) d x\right)}_{\text {function of } y} d y
$$

Review

We learned to compute the double integral

$$
\iint_{\mathcal{R}} f(x, y) d A
$$

of a function $f(x, y)$ over a region \mathcal{R} in the $x y$ plane:
(2) Over a "bottom-top" region:

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{a}^{b} \underbrace{\left(\int_{B(x)}^{T(x)} f(x, y) d y\right)}_{\text {function of } x} d x
$$

Review

We learned to compute the double integral

$$
\iint_{\mathcal{R}} f(x, y) d A
$$

of a function $f(x, y)$ over a region \mathcal{R} in the $x y$ plane:
(3) Over a "left-right" region:

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{c}^{d} \underbrace{\left(\int_{L(y)}^{R(y)} f(x, y) d x\right)}_{\text {function of } y} d y
$$

Double Integrals in Polar Coordinates

Today we'll learn how to compute double integrals $\iint_{\mathcal{R}} f(x, y) d A$ when the region \mathcal{R} is given in polar coordinates

Polar Coordinate Review

You can remember the conversions to and from polar coordinates by the triangle below

From Cartesian to polar coordinates:

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
\tan \theta & =\frac{y}{x}
\end{aligned}
$$

From polar to Cartesian coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Polar Curves

The boundaries of polar regions are sometimes given by polar curves.
Example: the Cardioid

$$
r=1+\cos (\theta)
$$

θ	$1+\cos (\theta)$
0	2
$\pi / 4$	$1+\sqrt{2} / 2$
$\pi / 2$	1
$3 \pi / 4$	$1-\sqrt{2} / 2$
π	0
$5 \pi / 4$	$1-\sqrt{2} / 2$
$3 \pi / 2$	1
$7 \pi / 4$	$1+\sqrt{2} / 2$
2π	2

Integrals in Polar Coordinates

To set up an integral in polar coordinates:

- Set up a polar coordinate grid with "polar rectangles" of side Δr and $r \Delta \theta$
- Find that the area of a small "polar rectangle" is $\Delta A=r \Delta r \Delta \theta$
- Guess that

$$
\sum_{i, j} f\left(r_{i} \cos \left(\theta_{j}\right), r_{i} \sin \left(\theta_{j}\right)\right) \Delta A
$$

becomes

$$
\iint f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Test Case: Polar Rectangles

$$
d A=r d r d \theta
$$

Find a polar integral for $\iint_{\mathbf{R}} f(x, y) d A$ if \mathbf{R} is the region shown at left below.

Polar Rectangles

The region $a \leq \theta \leq b$ and $c \leq r \leq d$ is called a polar rectangle

If \mathcal{R} is a polar rectangle,

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Puzzler \#1

If $a \leq \theta \leq b$ and $c \leq r \leq d$ then

$$
\begin{aligned}
& \iint_{\mathcal{R}} f(x, y) d A= \\
& \quad \int_{a}^{b} \int_{c}^{d} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Find $\iint_{\mathcal{R}} 2 x y d A$ if \mathcal{R} is the region between the circles of radius 2 and 5 in the first quadrant.

Example Courtesy of Paul's Online Math Notes

Area Enclosed by a Polar Curve

The area enclosed by a polar curve with $a \leq \theta \leq b$ is

$$
A=\frac{1}{2} \int_{a}^{b} r(\theta)^{2} d \theta
$$

$$
\Delta A=\frac{1}{2} r^{2} \Delta \theta
$$

Puzzler \#2

$$
A=\frac{1}{2} \int_{a}^{b} r(\theta)^{2} d \theta
$$

Find the area of one petal of the three-leafed rose $r=\sin (3 \theta)$.

θ	$\sin (3 \theta)$
0	0
$\pi / 6$	1
$\pi / 3$	0
$\pi / 2$	-1
$2 \pi / 3$	0
$5 \pi / 6$	-1
π	0

Volume in Polar Coordinates

Find the volume of the region that lies under the sphere $x^{2}+y^{2}+z^{2}=9$, above the plane $z=0$, and inside the cylinder $x^{2}+y^{2}=5$.

Example courtesy of Paul's Online Math Notes

Polar Coordinates Make Hard Problems Easy

Find $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ by computing I^{2} in polar coordinates.

Example courtesy of William Thomson, Lord Kelvin

Reminders for the Week of October 16-20

- Double Integrals are covered in Recitation on Tuesday October 17
- Your second exam takes place on Wednesday, October 18, 5:00-7:00 PM
- There is no recitation Thursday, October 19

