Math 213 - Exam II Review

Peter Perry

October 18, 2023

Exam II Reminders

- Your Exam covers webworks B1-B6
- Your Exam takes place tonight, 5:00-7:00 PM
- You are allowed a one-page sheet of notes (both sides OK)
- Section 011 will take the exam in CP 139
- Sections 012-014 will take the exam in CP 153
- You are only in section 011 if you have your recitation with Mr. Berggren from 12:00-12:50 PM TR
- You are in section 012 if you have Mr. Berggren 1:00-1:50 PM TR
- You are in section 013 if you have Mr. Alsteri 2:00-2:50 PM TR
- You are in section 014 if you have Mr. Alsetri 3:00-350 PM TR

Overview

Exam II will cover the following topics:

- Functions of several variables, limits
- Partial Differentiation basics, including the chain rule
- Tangent planes and normal lines
- Linear approximation and error
- Directional derivatives and the gradient
- Local maxima and minima of functions of two variables (second derivative test)
- Absolute Maxima and Minima on a Bounded Closed Region
- Lagrange multiplier method for constrained optimization problems

Limits

Find $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}-x y-y^{2}}{x^{2}-y^{2}}$ or show that it does not exist.
If $f(x, y)=\frac{2 x^{2}-x y-y^{2}}{x^{2}-y^{2}}$, observe that

$$
\begin{aligned}
& f(x, 0)=2 \\
& f(0, y)=1
\end{aligned}
$$

so the limits as $x \rightarrow 0$ along the line $y=0$ and as $y \rightarrow 0$ along the line $x=0$ do not agree. The limit does not exist.
Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$ or show that it does not exist.
If $f(x, y)=\frac{x^{3} y}{x^{6}+y^{2}}$ then

$$
\begin{aligned}
f(x, 0) & =0 \\
f\left(x, x^{3}\right) & =\frac{x^{6}}{2 x^{6}}=\frac{1}{2}
\end{aligned}
$$

so the limits as $x \rightarrow 0$ along the lines $y=0$ and $y=x^{3}$ do not agree. The limit does not exist.

Partial Derivatives

Find the first and second partial derivatives of

$$
f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2
$$

$$
\begin{array}{ll}
f_{x}(x, y)= & f_{y}(x, y)= \\
f_{x x}(x, y)= & f_{x y}(x, y)= \\
f_{y x}(x, y)= & f_{y y}(x, y)=
\end{array}
$$

Tangent Planes and Normal Lines

Find the equation of the tangent plane and normal line to the surface $z=x^{2}+y^{2}$ at the point $(1,0,1)$.

If $f(x, y)=x^{2}+y^{2}$ the surface is the graph of f. The normal at $(1,0,1)$ is given by $\left\langle-\frac{\partial f}{\partial x}(1,0),-\frac{\partial f}{\partial y}(1,0), 1\right\rangle=\langle-2,0,1\rangle$
The equation of the tangent plane is

$$
-2(x-1)+(z-1)=0
$$

and the equation of the normal line is

$$
\mathbf{r}(t)=\langle 1,0,1\rangle+t\langle-2,0,1\rangle
$$

Problem courtesy of CLP-3 Section 2.5

Tangent Planes and Normal Lines

Find the tangent plane and normal line to the graph of $x^{2}+y^{2}+z^{2}=30$ at the point $(1,-2,5)$

The normal to the surface is $(\nabla g)(1,-2,5)$ where $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Since $(\nabla g)(x, y, z)=\langle 2 x, 2 y, 2 z\rangle$, the normal is $\langle 2,-4,10\rangle$.
The equation of the tangent plane is

$$
2(x-1)-4(y+2)+10(z=5)=0
$$

and the equation of the normal line is

$$
\mathrm{r}(t)=\langle 1,-2,5\rangle+t\langle 2,-4,10\rangle
$$

Problem courtesy of Paul's Online Math Notes

Linear Approximation

Find an approximate value for $\frac{(0.998)^{3}}{1.003}$
First, find the linear approximation to $f(x, y)=x^{3} / y$ at $(1,1)$. We have $f(1,1)=1$ and

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=3 x^{2} / y, & \frac{\partial f}{\partial x}(1,1)=3 \\
\frac{\partial f}{\partial y}=-x^{3} / y^{2}, & \frac{\partial f}{\partial y}(1,1)=-1
\end{array}
$$

So

$$
L(x, y)=1+3(x-1)-(y-1)
$$

Now evaluate

$$
L(0.998,1.003)
$$

Problem courtesy of CLP-3 Section 2.6

Directional Derivatives, Gradient

If \mathbf{u} is a unit vector, the directional derivative of $f(x, y)$ at (a, b) in the direction \mathbf{u} is

$$
D_{\mathbf{u}} f(a, b)=(\nabla f)(a, b) \cdot \mathbf{u}
$$

The directional derivative of $g(x, y, z)$ at (a, b, c) in the direction \mathbf{u} is

$$
D_{\mathbf{u}} g(a, b, c)=(\nabla g)(a, b, c) \cdot \mathbf{u}
$$

Find the directional derivative of $w(x, y, z)=x y z+\ln (x z)$ at $(1,3,1)$ in the direction of $\langle 1,0,1\rangle$ Some hints: Choose $u=\left\langle\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle$, a unit vector in the direction of $\langle 1,0,1\rangle$ and take the dot product of \mathbf{u} with $(\nabla w)(1,3,1)$.

Problem courtesy of CLP-3 Section 2.7

More About the Gradient

$(\nabla f)(a, b)$ points in the direction of greatest rate of change of f at (a, b) and its magnitude is the greatest rate of change

A hiker is walking up a mountain with height

$$
h(x, y)=6-x y^{2}
$$

where the positive x-axis points east and the positive y axis points north. The hiker starts out at $P(2,1,4)$.

In what direction should the hiker proceed from P to ascend on the steepest path?

We found that $(\nabla h)(2,1)=\langle-1,-4\rangle$ so the hiker should proceed south west.

Problem courtesy of CLP-3 Section 2.7, Problem 8

Local Maxima and Minima

Find and classify the local maxima and minima of

$$
f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2
$$

Remember that

$$
\begin{array}{ll}
f_{x}(x, y)=6 x(y-1) & f_{y}(x, y)=3 x^{2}+3 y^{2}-6 y \\
f_{x x}(x, y)=6 y-6 & f_{x y}(x, y)=6 x \\
f_{y x}(x, y)=6 x & f_{y y}(x, y)=6 y-6
\end{array}
$$

The critical points are $(0,0),(0,2),(1,1)$ and $(-1,1)$. You can apply the second derivative test and find that these points are, in order, a local maximum, a local minimum, and two saddle points.

Absolute Maxima and Minima

Find the absolute maximum and minimum of the function

$$
T(x, y)=(x+y) e^{-\left(x^{2}+y^{2}\right)}
$$

on the region $x^{2}+y^{2} \leq 1$.
This function has an interior critical point at $(1 / 2,1 / 2)$ with
$f(1 / 2,1 / 2)=e^{-1 / 2} \sim 0.606$.
The boundary is parametrized by $x=\cos \theta, y=\sin \theta, 0 \leq \theta \leq 2 \pi$. You can work out that

$$
f(\cos \theta, \sin \theta)=(\cos \theta+\sin \theta) e^{-1}
$$

and there are local extrema at $\theta=\pi / 4, \theta=5 \pi / 4$. Testing the critical points and endpoints we get

θ	$f(\cos \theta, \sin \theta)$
0	$e^{-1} \sim 0.367$
$\pi / 4$	$\sqrt{2} e^{-1} \sim 0.520$
$5 \pi / 4$	$-\sqrt{2} e^{-1} \sim-0.520$

so the minimum is $-\sqrt{2} e^{-1}$ and the maximum is $e^{\frac{1}{2}}$.

Problem courtesy of CLP-3 Section 2.9, Example 2.9.21

Lagrange Multiplier Method

Find the maximum and minimum of the function

$$
f(x, y)=x^{2}-10 x-y^{2}
$$

on the ellipse whose equation is $x^{2}+4 y^{2}=16$.
Lagrange equations:

$$
\begin{aligned}
2 x-10 & =2 \lambda x \\
-2 y & =8 \lambda y
\end{aligned}
$$

or

$$
\begin{aligned}
2 x(1-\lambda) & =10 \\
2 y(4 \lambda+1) & =0
\end{aligned}
$$

so either $y=0$ or $\lambda=-1 / 4$. You can check that this leads to $(x, y)=(\pm 4,0)$. From $f(4,0)=-24, f(-4,0)=56$ we obtain the maximum and minimum of f on the ellipse.

Problem courtesy of CLP-3 section 2.10, Example 2.10.3

Reminders for the Week of October 16-20

- Your exam is tonight, 5:00-7:00 PM
- There is no recitation Thursday, October 19
- On Friday, October 20, we will begin discussing triple integrals

